Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 24;66(Pt 1):o234. doi: 10.1107/S1600536809054373

2-(2-Pyridylsulfan­yl)acetic acid

Xiao-Feng Li a, Yan An a,*, Hui-Guo Chen a, Li-Hua Dong a, Wei Yan a
PMCID: PMC2980086  PMID: 21580116

Abstract

All non-H atoms of the title compound, C7H7NO2S, lie on a crystallographic mirror plane, with the two methyl­ene H atoms bis­ected by this plane. The crystal packing is characterized by inter­molecular C—H⋯O and O—H⋯N contacts, which link the mol­ecules into infinite zigzag chains parallel to [010].

Related literature

For background to the design of similar ligands, see: Akrivos (2001); Ye et al. (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-0o234-scheme1.jpg

Experimental

Crystal data

  • C7H7NO2S

  • M r = 169.20

  • Orthorhombic, Inline graphic

  • a = 14.5521 (19) Å

  • b = 6.6774 (13) Å

  • c = 7.7212 (19) Å

  • V = 750.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.37 × 0.35 × 0.27 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.875, T max = 0.906

  • 1160 measured reflections

  • 805 independent reflections

  • 473 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.140

  • S = 1.00

  • 805 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054373/sj2712sup1.cif

e-66-0o234-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054373/sj2712Isup2.hkl

e-66-0o234-Isup2.hkl (40.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N1i 0.82 1.79 2.606 (5) 175
C2—H2A⋯O2ii 0.93 2.50 3.410 (6) 167
C3—H3A⋯O1iii 0.93 2.46 3.229 (5) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Project of the Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the ‘Chen Guang’ project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Re-use Foundation (PCRRF09001) for financial support.

supplementary crystallographic information

Comment

Compounds involving heterocyclic thiolate groups are ambidentate ligands which can form various metal-organic coordination structures via coordination of the exocyclic sulfur or the endocyclic nitrogen atoms (Akrivos, 2001). Similarly, carboxylic acids also exhibit diverse coordination modes in different metal complexes (Ye et al., 2005). In attempts to develop novel coordination frameworks, we have designed and synthesized the title compound, 2-(pyridin-2-ylthio)acetic acid (I), as a potentially multidentate ligand. Its crystal structure is reported here.

The single-crystal X-ray analysis of I reveals that all the bond lengths in compound I are within normal ranges (Allen et al., 1987). All the non-hydrogen atoms in each molecule are coplanar with the methylene hydrogen atoms related by mirror symmetry (Fig. 1). In the crystal structure molecules are linked into infinite, one dimensional, zigzag chains due to intermolecular H-bonding (Fig. 2, Table 2).

Experimental

The title compound was prepared by heating a mixture of 2-pyridinethione (0.335 g, 3 mmol), chloroacetic acid (0.292 g, 3.1 mmol) and sodium hydroxide (0.248 g, 6.2 mmol) in ethanol at 353 K with magnetic stirring for 8 h. The pH of the solution was adjusted to 6 with hydrochloric acid. Yellow crystals were obtained after being recrystrallized twice from the ethanol solution (yield 78%). Analysis, calculated for C7H7NO2S: C 49.69, H 4.17, N 8.28%; Found: C 50.06, H 4.27, N 8.06%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2, and 0.82Å, Uiso = 1.5Ueq (O) for the OH group.

Figures

Fig. 1.

Fig. 1.

View of the structure of I. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packin of the title compound viewed down the b axis.

Crystal data

C7H7NO2S F(000) = 352
Mr = 169.20 Dx = 1.498 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 343 reflections
a = 14.5521 (19) Å θ = 2.8–28.0°
b = 6.6774 (13) Å µ = 0.37 mm1
c = 7.7212 (19) Å T = 293 K
V = 750.3 (3) Å3 Block, yellow
Z = 4 0.37 × 0.35 × 0.27 mm

Data collection

Bruker APEXII CCD diffractometer 805 independent reflections
Radiation source: fine-focus sealed tube 473 reflections with I > 2σ(I)
graphite Rint = 0.066
φ and ω scans θmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −17→1
Tmin = 0.875, Tmax = 0.906 k = −1→8
1160 measured reflections l = −9→1

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0634P)2] where P = (Fo2 + 2Fc2)/3
805 reflections (Δ/σ)max = 0.003
67 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.34558 (7) 0.2500 0.33858 (14) 0.0562 (6)
C1 0.5342 (3) 0.2500 0.6916 (6) 0.0583 (19)
H1A 0.5981 0.2500 0.6879 0.070*
C2 0.4919 (3) 0.2500 0.8503 (6) 0.0560 (17)
H2A 0.5262 0.2500 0.9520 0.067*
C3 0.3973 (3) 0.2500 0.8547 (6) 0.0545 (17)
H3A 0.3668 0.2500 0.9605 0.065*
C4 0.3481 (3) 0.2500 0.7029 (5) 0.0484 (15)
H4A 0.2842 0.2500 0.7050 0.058*
C5 0.3950 (3) 0.2500 0.5463 (5) 0.0452 (15)
C6 0.2251 (2) 0.2500 0.3861 (5) 0.0459 (15)
H6A 0.2093 0.1322 0.4533 0.055* 0.50
H6B 0.2093 0.3678 0.4533 0.055* 0.50
C7 0.1723 (3) 0.2500 0.2160 (6) 0.0454 (15)
N1 0.4877 (2) 0.2500 0.5405 (5) 0.0474 (13)
O1 0.2095 (2) 0.2500 0.0775 (4) 0.0638 (13)
O2 0.08419 (18) 0.2500 0.2437 (4) 0.0557 (12)
H2B 0.0569 0.2500 0.1508 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0240 (6) 0.1177 (15) 0.0269 (6) 0.000 −0.0001 (5) 0.000
C1 0.025 (2) 0.109 (6) 0.041 (3) 0.000 −0.0074 (19) 0.000
C2 0.042 (3) 0.095 (5) 0.031 (2) 0.000 −0.007 (2) 0.000
C3 0.041 (3) 0.099 (5) 0.023 (2) 0.000 0.006 (2) 0.000
C4 0.028 (2) 0.086 (5) 0.031 (2) 0.000 0.0029 (18) 0.000
C5 0.023 (2) 0.083 (5) 0.030 (2) 0.000 −0.0021 (17) 0.000
C6 0.0196 (19) 0.088 (5) 0.030 (2) 0.000 −0.0003 (17) 0.000
C7 0.027 (2) 0.080 (5) 0.029 (2) 0.000 0.0009 (18) 0.000
N1 0.0240 (17) 0.088 (4) 0.0304 (18) 0.000 −0.0001 (15) 0.000
O1 0.0268 (15) 0.134 (4) 0.0310 (16) 0.000 −0.0006 (13) 0.000
O2 0.0211 (16) 0.112 (4) 0.0345 (16) 0.000 −0.0018 (13) 0.000

Geometric parameters (Å, °)

S1—C5 1.757 (4) C4—C5 1.389 (6)
S1—C6 1.791 (4) C4—H4A 0.9300
C1—N1 1.348 (5) C5—N1 1.350 (5)
C1—C2 1.372 (6) C6—C7 1.522 (6)
C1—H1A 0.9300 C6—H6A 0.9700
C2—C3 1.377 (6) C6—H6B 0.9700
C2—H2A 0.9300 C7—O1 1.198 (5)
C3—C4 1.374 (6) C7—O2 1.301 (5)
C3—H3A 0.9300 O2—H2B 0.8200
C5—S1—C6 102.31 (19) N1—C5—S1 112.3 (3)
N1—C1—C2 123.2 (4) C4—C5—S1 126.4 (3)
N1—C1—H1A 118.4 C7—C6—S1 108.5 (3)
C2—C1—H1A 118.4 C7—C6—H6A 110.0
C1—C2—C3 118.1 (4) S1—C6—H6A 110.0
C1—C2—H2A 121.0 C7—C6—H6B 110.0
C3—C2—H2A 121.0 S1—C6—H6B 110.0
C4—C3—C2 120.0 (4) H6A—C6—H6B 108.4
C4—C3—H3A 120.0 O1—C7—O2 126.3 (4)
C2—C3—H3A 120.0 O1—C7—C6 122.9 (4)
C3—C4—C5 119.1 (4) O2—C7—C6 110.8 (4)
C3—C4—H4A 120.4 C1—N1—C5 118.3 (4)
C5—C4—H4A 120.4 C7—O2—H2B 109.5
N1—C5—C4 121.3 (4)
N1—C1—C2—C3 0.000 (1) C5—S1—C6—C7 180.0
C1—C2—C3—C4 0.000 (1) S1—C6—C7—O1 0.0
C2—C3—C4—C5 0.000 (1) S1—C6—C7—O2 180.0
C3—C4—C5—N1 0.0 C2—C1—N1—C5 0.0
C3—C4—C5—S1 180.0 C4—C5—N1—C1 0.0
C6—S1—C5—N1 180.0 S1—C5—N1—C1 180.0
C6—S1—C5—C4 0.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2B···N1i 0.82 1.79 2.606 (5) 175
C2—H2A···O2ii 0.93 2.50 3.410 (6) 167
C3—H3A···O1iii 0.93 2.46 3.229 (5) 140

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) x+1/2, y, −z+3/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2712).

References

  1. Akrivos, P. D. (2001). Coord. Chem. Rev.213, 181–210.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev.249, 545–565.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054373/sj2712sup1.cif

e-66-0o234-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054373/sj2712Isup2.hkl

e-66-0o234-Isup2.hkl (40.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES