Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o51. doi: 10.1107/S1600536809051484

N-(3,5-Dichloro­phen­yl)maleamic acid

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, K Shakuntala a, Hartmut Fuess c
PMCID: PMC2980102  PMID: 21580154

Abstract

In the title compound, C10H7Cl2NO3, the asymmetric unit contains four independent mol­ecules, which are linked to each other by N—H⋯O hydrogen bonds. The mol­ecular structure is stabilized by a short intra­molecular O—H⋯O hydrogen bond within each maleamic acid unit. In the crystal, the mol­ecules are linked into networks through N—H⋯O hydrogen bonds and inter­molecular C—Cl⋯O=C contacts [Cl⋯O = 3.0897 (12) and 3.0797 (13) Å].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009); Gowda, Tokarčík et al. (2009); Lo & Ng (2009); Prasad et al. (2002); Shakuntala et al. (2009). For short halogen–oxygen contacts, see: Fourmigué (2009). Kubicki (2004).graphic file with name e-66-00o51-scheme1.jpg

Experimental

Crystal data

  • C10H7Cl2NO3

  • M r = 260.07

  • Triclinic, Inline graphic

  • a = 8.13786 (12) Å

  • b = 16.5293 (3) Å

  • c = 17.4170 (3) Å

  • α = 103.4502 (17)°

  • β = 100.6466 (15)°

  • γ = 99.5964 (15)°

  • V = 2184.79 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.59 × 0.51 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO, Oxford Diffraction, 2009) T min = 0.728, T max = 0.887

  • 46919 measured reflections

  • 8204 independent reflections

  • 6694 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.09

  • 8204 reflections

  • 581 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051484/dn2519sup1.cif

e-66-00o51-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051484/dn2519Isup2.hkl

e-66-00o51-Isup2.hkl (393.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O33i 0.86 2.07 2.9254 (17) 172
N21—H21⋯O13 0.86 2.05 2.8748 (18) 161
N31—H31⋯O43 0.86 2.09 2.9244 (19) 165
N41—H41⋯O23 0.86 2.07 2.9186 (18) 168
O12—H12A⋯O11 0.82 1.65 2.4680 (18) 175
O22—H22A⋯O21 0.82 1.64 2.4613 (17) 177
O32—H32A⋯O31 0.82 1.66 2.4772 (17) 177
O42—H42A⋯O41 0.82 1.65 2.4684 (18) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

In the present work, as a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda, Foro et al.,2009; Gowda, Tokarčík et al., 2009; Shakuntala et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,5-dichlorophenyl)maleamic acid (I) has been determined.

The asymmetric unit of (I) contains four independent molecules linked to each other through N-H···O intermolecular hydrogen bonds(Table 1, Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure of (I), relatively rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-phenylmaleamic acid (Lo & Ng, 2009), N-(3,4-dimethylphenyl)maleamic acid, N-(2,4,6-trimethylphenyl)- maleamic acid (Gowda,Tokarčík et al., 2009) and N-(2,5-dichlorophenyl)maleamic acid (Shakuntala et al., 2009).

Each maleamic unit includes a short intramolecular hydrogen O—H···O bond (Table 1). Bond lengths C12–C13 =1.329 (2), C22–C23 =1.336 (2), C32–C33 =1.335 (2) and C42–C43 =1.329 (2)Å clearly indicate the double bond character.

The dihedral angles between the dichloro-substituted phenyl ring and the amido group –NHCO– are 4.5 (3), 8.4 (2), 10.4 (2) and 8.3 (3)° in the four independent molecules.

In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into infinite chain running parallel to the [-1 1 1] vector. The relatively short Cl···O contacts build up a two-dimensional network. Part of the crystal structure is shown in Fig. 2. The molecule containing the amido atom N11 forms an inversion dimer, which is is stabilized by two short Cl···O contacts with the length of 3.0897 (12)Å. Another short Cl···O contact between the atoms Cl12 and O41(iii) has the length of 3.0797 (13) Å. [Symmetry code (iii): x, y-1, z-1].

Our data for the C–Cl···O halogen bonds are in agreement with the observations of others (Kubicki, 2004; Fourmigué 2009).

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid N-(3,5-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. Colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

All H atoms were visible in difference maps and further placed in calculated positions (C–H = 0.93 Å, N–H = 0.86 Å, N–H = 0.82 Å) and refined using the riding model. The Uiso(H) values were set at 1.2Ueq(C, N, O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Part of crystal structure of (I) showing the chain of molecules linked by N–H···O hydrogen bonds (represented by dashed lines). The molecule with the amido atom N11 forms an inversion dimer stabilized via short Cl···O contacts involving the atoms Cl11 and O11.H atoms not involved in hydrogen bonding were omitted for clarity.[Symmetry code (ii): -x, -y, -z]

Crystal data

C10H7Cl2NO3 Z = 8
Mr = 260.07 F(000) = 1056
Triclinic, P1 Dx = 1.581 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.13786 (12) Å Cell parameters from 29193 reflections
b = 16.5293 (3) Å θ = 2.0–29.5°
c = 17.4170 (3) Å µ = 0.58 mm1
α = 103.4502 (17)° T = 295 K
β = 100.6466 (15)° Block, colourless
γ = 99.5964 (15)° 0.59 × 0.51 × 0.22 mm
V = 2184.79 (7) Å3

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 8204 independent reflections
graphite 6694 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.017
ω scans θmax = 25.6°, θmin = 2.0°
Absorption correction: analytical (CrysAlis PRO, Oxford Diffraction, 2009) h = −9→9
Tmin = 0.728, Tmax = 0.887 k = −20→20
46919 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.4698P] where P = (Fo2 + 2Fc2)/3
8204 reflections (Δ/σ)max = 0.001
581 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl11 −0.12991 (7) −0.13131 (3) −0.04861 (4) 0.07207 (17)
Cl12 0.08943 (6) −0.35296 (3) −0.26076 (3) 0.05786 (14)
O11 0.38762 (19) 0.06550 (8) −0.04674 (10) 0.0728 (5)
O12 0.51265 (18) 0.21919 (9) 0.01320 (10) 0.0688 (4)
H12A 0.4669 0.1684 −0.0054 0.103*
O13 0.72670 (19) 0.30909 (8) 0.00178 (9) 0.0716 (4)
N11 0.42407 (17) −0.04601 (8) −0.14019 (8) 0.0403 (3)
H11 0.4904 −0.0625 −0.1709 0.048*
C11 0.4692 (2) 0.03579 (11) −0.09563 (10) 0.0439 (4)
C12 0.6215 (2) 0.08687 (11) −0.10927 (11) 0.0473 (4)
H12 0.6767 0.0576 −0.1453 0.057*
C13 0.6907 (2) 0.16943 (11) −0.07690 (11) 0.0499 (4)
H13 0.7879 0.1886 −0.0941 0.060*
C14 0.6420 (2) 0.23697 (11) −0.01833 (11) 0.0465 (4)
C15 0.2796 (2) −0.10786 (10) −0.14214 (9) 0.0369 (3)
C16 0.1585 (2) −0.08976 (11) −0.09764 (11) 0.0448 (4)
H16 0.1701 −0.0354 −0.0641 0.054*
C17 0.0209 (2) −0.15445 (11) −0.10443 (11) 0.0449 (4)
C18 −0.0017 (2) −0.23577 (11) −0.15278 (10) 0.0424 (4)
H18 −0.0949 −0.2785 −0.1558 0.051*
C19 0.1201 (2) −0.25142 (10) −0.19677 (10) 0.0391 (4)
C20 0.2594 (2) −0.18954 (10) −0.19278 (10) 0.0382 (4)
H20 0.3390 −0.2019 −0.2233 0.046*
Cl21 0.84361 (9) 0.77742 (3) 0.13652 (4) 0.07855 (19)
Cl22 0.89486 (6) 0.54211 (3) −0.12381 (3) 0.05692 (13)
O21 0.54916 (18) 0.52453 (8) 0.20423 (8) 0.0567 (3)
O22 0.4351 (2) 0.49126 (8) 0.31739 (8) 0.0650 (4)
H22A 0.4712 0.5037 0.2797 0.097*
O23 0.36320 (18) 0.37768 (9) 0.35801 (8) 0.0615 (4)
N21 0.63526 (17) 0.45503 (8) 0.09578 (8) 0.0396 (3)
H21 0.6386 0.4052 0.0680 0.048*
C21 0.5655 (2) 0.45722 (10) 0.16001 (10) 0.0391 (4)
C22 0.5086 (2) 0.37266 (11) 0.17328 (10) 0.0420 (4)
H22 0.5174 0.3261 0.1336 0.050*
C23 0.4463 (2) 0.35426 (11) 0.23449 (10) 0.0428 (4)
H23 0.4192 0.2963 0.2306 0.051*
C24 0.4128 (2) 0.40956 (12) 0.30745 (10) 0.0446 (4)
C25 0.7041 (2) 0.52430 (10) 0.06799 (10) 0.0381 (4)
C26 0.7260 (2) 0.60907 (11) 0.11038 (10) 0.0436 (4)
H26 0.6886 0.6236 0.1581 0.052*
C27 0.8047 (2) 0.67118 (11) 0.07996 (11) 0.0488 (4)
C28 0.8582 (2) 0.65292 (12) 0.00858 (11) 0.0491 (4)
H28 0.9105 0.6959 −0.0108 0.059*
C29 0.8309 (2) 0.56830 (12) −0.03288 (10) 0.0428 (4)
C30 0.7562 (2) 0.50368 (11) −0.00454 (10) 0.0407 (4)
H30 0.7407 0.4470 −0.0335 0.049*
Cl31 0.55958 (9) 1.27986 (3) 0.76423 (5) 0.0959 (2)
Cl32 0.82403 (7) 1.05115 (3) 0.58042 (4) 0.07005 (16)
O31 0.12442 (17) 1.02362 (8) 0.74663 (8) 0.0571 (3)
O32 −0.15047 (18) 0.99017 (9) 0.78660 (10) 0.0684 (4)
H32A −0.0581 1.0026 0.7750 0.103*
O33 −0.36446 (17) 0.87993 (9) 0.75591 (9) 0.0645 (4)
N31 0.25893 (18) 0.96191 (9) 0.65386 (9) 0.0436 (3)
H31 0.2552 0.9152 0.6185 0.052*
C31 0.1331 (2) 0.96077 (10) 0.69387 (10) 0.0411 (4)
C32 0.0088 (2) 0.87797 (11) 0.67137 (10) 0.0433 (4)
H32 0.0355 0.8333 0.6359 0.052*
C33 −0.1363 (2) 0.85857 (11) 0.69501 (11) 0.0450 (4)
H33 −0.1929 0.8016 0.6743 0.054*
C34 −0.2235 (2) 0.91137 (12) 0.74824 (11) 0.0485 (4)
C35 0.3974 (2) 1.03050 (10) 0.66258 (10) 0.0412 (4)
C36 0.4083 (2) 1.11348 (11) 0.70717 (11) 0.0496 (4)
H36 0.3236 1.1269 0.7340 0.060*
C37 0.5476 (3) 1.17524 (11) 0.71059 (12) 0.0547 (5)
C38 0.6779 (2) 1.15837 (12) 0.67291 (12) 0.0549 (5)
H38 0.7719 1.2011 0.6770 0.066*
C39 0.6626 (2) 1.07548 (11) 0.62901 (12) 0.0487 (4)
C40 0.5251 (2) 1.01120 (11) 0.62243 (11) 0.0461 (4)
H40 0.5174 0.9559 0.5918 0.055*
Cl41 −0.02282 (7) 0.37735 (4) 0.72019 (3) 0.06395 (15)
Cl42 0.24811 (9) 0.16293 (3) 0.52385 (4) 0.07410 (17)
O41 0.1923 (2) 0.57709 (8) 0.57929 (9) 0.0737 (5)
O42 0.2233 (2) 0.73192 (9) 0.59737 (10) 0.0750 (5)
H42A 0.2170 0.6815 0.5957 0.112*
O43 0.3060 (2) 0.81990 (8) 0.53013 (9) 0.0711 (4)
N41 0.24994 (17) 0.46304 (8) 0.49887 (8) 0.0410 (3)
H41 0.2850 0.4450 0.4557 0.049*
C41 0.2470 (2) 0.54591 (10) 0.52001 (10) 0.0425 (4)
C42 0.3126 (2) 0.59666 (11) 0.46873 (10) 0.0432 (4)
H42 0.3481 0.5668 0.4248 0.052*
C43 0.3275 (2) 0.67973 (11) 0.47709 (11) 0.0439 (4)
H43 0.3736 0.6988 0.4377 0.053*
C44 0.2847 (2) 0.74820 (11) 0.53737 (11) 0.0469 (4)
C45 0.2013 (2) 0.40192 (10) 0.54029 (10) 0.0385 (4)
C46 0.1217 (2) 0.41867 (11) 0.60458 (10) 0.0442 (4)
H46 0.0955 0.4716 0.6220 0.053*
C47 0.0823 (2) 0.35548 (12) 0.64202 (10) 0.0455 (4)
C48 0.1202 (2) 0.27686 (12) 0.61936 (11) 0.0501 (4)
H48 0.0949 0.2355 0.6462 0.060*
C49 0.1980 (2) 0.26185 (11) 0.55458 (11) 0.0474 (4)
C50 0.2381 (2) 0.32229 (11) 0.51464 (10) 0.0429 (4)
H50 0.2892 0.3100 0.4710 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl11 0.0741 (3) 0.0627 (3) 0.0933 (4) 0.0149 (3) 0.0646 (3) 0.0126 (3)
Cl12 0.0638 (3) 0.0411 (2) 0.0622 (3) 0.0011 (2) 0.0306 (2) −0.0035 (2)
O11 0.0714 (9) 0.0484 (8) 0.0902 (10) −0.0030 (7) 0.0571 (8) −0.0163 (7)
O12 0.0658 (9) 0.0464 (8) 0.0823 (10) 0.0011 (6) 0.0405 (8) −0.0155 (7)
O13 0.0817 (10) 0.0399 (8) 0.0843 (10) −0.0005 (7) 0.0403 (8) −0.0067 (7)
N11 0.0392 (7) 0.0373 (7) 0.0449 (8) 0.0084 (6) 0.0224 (6) 0.0021 (6)
C11 0.0439 (9) 0.0402 (9) 0.0457 (10) 0.0085 (7) 0.0197 (8) 0.0013 (7)
C12 0.0458 (9) 0.0426 (9) 0.0522 (10) 0.0093 (8) 0.0263 (8) −0.0011 (8)
C13 0.0464 (10) 0.0436 (10) 0.0564 (11) 0.0031 (8) 0.0254 (9) 0.0015 (8)
C14 0.0483 (10) 0.0400 (10) 0.0467 (10) 0.0091 (8) 0.0138 (8) 0.0014 (8)
C15 0.0374 (8) 0.0384 (8) 0.0378 (8) 0.0094 (7) 0.0155 (7) 0.0097 (7)
C16 0.0499 (10) 0.0393 (9) 0.0482 (10) 0.0107 (7) 0.0257 (8) 0.0055 (7)
C17 0.0474 (9) 0.0476 (10) 0.0494 (10) 0.0155 (8) 0.0301 (8) 0.0137 (8)
C18 0.0420 (9) 0.0423 (9) 0.0464 (10) 0.0060 (7) 0.0195 (8) 0.0142 (8)
C19 0.0444 (9) 0.0367 (8) 0.0371 (9) 0.0101 (7) 0.0141 (7) 0.0073 (7)
C20 0.0389 (8) 0.0412 (9) 0.0383 (9) 0.0125 (7) 0.0176 (7) 0.0086 (7)
Cl21 0.1164 (5) 0.0404 (3) 0.0771 (4) 0.0009 (3) 0.0463 (3) 0.0053 (2)
Cl22 0.0648 (3) 0.0712 (3) 0.0456 (3) 0.0192 (2) 0.0299 (2) 0.0205 (2)
O21 0.0796 (9) 0.0398 (7) 0.0569 (8) 0.0105 (6) 0.0441 (7) 0.0048 (6)
O22 0.0947 (11) 0.0524 (8) 0.0509 (8) 0.0086 (7) 0.0460 (8) 0.0027 (6)
O23 0.0785 (9) 0.0694 (9) 0.0479 (7) 0.0176 (7) 0.0363 (7) 0.0195 (7)
N21 0.0481 (8) 0.0355 (7) 0.0384 (7) 0.0110 (6) 0.0213 (6) 0.0062 (6)
C21 0.0393 (8) 0.0412 (9) 0.0369 (8) 0.0082 (7) 0.0161 (7) 0.0053 (7)
C22 0.0486 (9) 0.0392 (9) 0.0395 (9) 0.0103 (7) 0.0207 (8) 0.0046 (7)
C23 0.0453 (9) 0.0417 (9) 0.0434 (9) 0.0087 (7) 0.0185 (8) 0.0096 (7)
C24 0.0418 (9) 0.0541 (11) 0.0377 (9) 0.0076 (8) 0.0163 (7) 0.0087 (8)
C25 0.0348 (8) 0.0431 (9) 0.0390 (9) 0.0095 (7) 0.0124 (7) 0.0124 (7)
C26 0.0469 (9) 0.0433 (9) 0.0414 (9) 0.0086 (7) 0.0183 (8) 0.0079 (7)
C27 0.0556 (11) 0.0399 (9) 0.0498 (10) 0.0067 (8) 0.0178 (9) 0.0083 (8)
C28 0.0523 (10) 0.0485 (10) 0.0506 (11) 0.0068 (8) 0.0193 (9) 0.0186 (8)
C29 0.0386 (9) 0.0576 (11) 0.0378 (9) 0.0142 (8) 0.0152 (7) 0.0160 (8)
C30 0.0422 (9) 0.0440 (9) 0.0377 (9) 0.0131 (7) 0.0137 (7) 0.0087 (7)
Cl31 0.1081 (5) 0.0399 (3) 0.1330 (6) −0.0019 (3) 0.0686 (4) −0.0086 (3)
Cl32 0.0627 (3) 0.0547 (3) 0.1095 (5) 0.0189 (2) 0.0499 (3) 0.0271 (3)
O31 0.0623 (8) 0.0436 (7) 0.0635 (8) 0.0072 (6) 0.0343 (7) −0.0014 (6)
O32 0.0652 (9) 0.0518 (8) 0.0915 (11) 0.0138 (7) 0.0504 (8) 0.0001 (7)
O33 0.0522 (8) 0.0674 (9) 0.0782 (10) 0.0122 (7) 0.0375 (7) 0.0113 (7)
N31 0.0513 (8) 0.0350 (7) 0.0469 (8) 0.0084 (6) 0.0234 (7) 0.0070 (6)
C31 0.0454 (9) 0.0399 (9) 0.0425 (9) 0.0141 (7) 0.0181 (8) 0.0101 (7)
C32 0.0480 (9) 0.0381 (9) 0.0457 (9) 0.0127 (7) 0.0201 (8) 0.0058 (7)
C33 0.0466 (9) 0.0407 (9) 0.0484 (10) 0.0093 (7) 0.0191 (8) 0.0076 (8)
C34 0.0488 (10) 0.0524 (11) 0.0527 (11) 0.0176 (8) 0.0249 (9) 0.0153 (9)
C35 0.0481 (9) 0.0390 (9) 0.0409 (9) 0.0102 (7) 0.0163 (7) 0.0143 (7)
C36 0.0581 (11) 0.0413 (9) 0.0537 (11) 0.0109 (8) 0.0260 (9) 0.0106 (8)
C37 0.0675 (12) 0.0364 (9) 0.0604 (12) 0.0077 (8) 0.0254 (10) 0.0075 (8)
C38 0.0542 (11) 0.0417 (10) 0.0703 (13) 0.0037 (8) 0.0220 (10) 0.0172 (9)
C39 0.0502 (10) 0.0453 (10) 0.0608 (11) 0.0153 (8) 0.0240 (9) 0.0217 (9)
C40 0.0529 (10) 0.0376 (9) 0.0540 (11) 0.0131 (8) 0.0221 (8) 0.0143 (8)
Cl41 0.0705 (3) 0.0751 (3) 0.0505 (3) 0.0069 (3) 0.0327 (2) 0.0171 (2)
Cl42 0.1134 (5) 0.0526 (3) 0.0719 (4) 0.0381 (3) 0.0316 (3) 0.0251 (3)
O41 0.1289 (13) 0.0460 (8) 0.0721 (9) 0.0321 (8) 0.0727 (10) 0.0180 (7)
O42 0.1258 (13) 0.0440 (8) 0.0763 (10) 0.0302 (9) 0.0658 (10) 0.0158 (7)
O43 0.1044 (12) 0.0400 (8) 0.0795 (10) 0.0188 (7) 0.0456 (9) 0.0158 (7)
N41 0.0503 (8) 0.0369 (7) 0.0386 (7) 0.0099 (6) 0.0229 (6) 0.0058 (6)
C41 0.0498 (10) 0.0388 (9) 0.0419 (9) 0.0124 (7) 0.0206 (8) 0.0070 (7)
C42 0.0509 (10) 0.0430 (9) 0.0402 (9) 0.0142 (8) 0.0226 (8) 0.0077 (7)
C43 0.0477 (9) 0.0433 (9) 0.0453 (10) 0.0106 (7) 0.0200 (8) 0.0135 (8)
C44 0.0528 (10) 0.0375 (10) 0.0507 (10) 0.0097 (8) 0.0177 (8) 0.0083 (8)
C45 0.0377 (8) 0.0378 (8) 0.0381 (9) 0.0043 (7) 0.0111 (7) 0.0077 (7)
C46 0.0455 (9) 0.0420 (9) 0.0443 (9) 0.0063 (7) 0.0175 (8) 0.0070 (8)
C47 0.0408 (9) 0.0547 (11) 0.0373 (9) 0.0012 (8) 0.0125 (7) 0.0094 (8)
C48 0.0530 (10) 0.0519 (11) 0.0455 (10) 0.0040 (8) 0.0106 (8) 0.0194 (8)
C49 0.0526 (10) 0.0426 (9) 0.0461 (10) 0.0119 (8) 0.0090 (8) 0.0110 (8)
C50 0.0453 (9) 0.0436 (9) 0.0392 (9) 0.0098 (7) 0.0135 (7) 0.0072 (7)

Geometric parameters (Å, °)

Cl11—C17 1.7383 (15) Cl31—C37 1.7410 (18)
Cl12—C19 1.7347 (16) Cl32—C39 1.7412 (18)
O11—C11 1.2370 (19) O31—C31 1.2383 (19)
O12—C14 1.297 (2) O32—C34 1.299 (2)
O12—H12A 0.8200 O32—H32A 0.8200
O13—C14 1.209 (2) O33—C34 1.222 (2)
N11—C11 1.344 (2) N31—C31 1.341 (2)
N11—C15 1.413 (2) N31—C35 1.417 (2)
N11—H11 0.8600 N31—H31 0.8600
C11—C12 1.469 (2) C31—C32 1.481 (2)
C12—C13 1.329 (2) C32—C33 1.335 (2)
C12—H12 0.9300 C32—H32 0.9300
C13—C14 1.487 (2) C33—C34 1.483 (2)
C13—H13 0.9300 C33—H33 0.9300
C15—C16 1.390 (2) C35—C36 1.390 (2)
C15—C20 1.395 (2) C35—C40 1.395 (2)
C16—C17 1.380 (2) C36—C37 1.375 (3)
C16—H16 0.9300 C36—H36 0.9300
C17—C18 1.372 (2) C37—C38 1.380 (3)
C18—C19 1.382 (2) C38—C39 1.378 (3)
C18—H18 0.9300 C38—H38 0.9300
C19—C20 1.374 (2) C39—C40 1.376 (2)
C20—H20 0.9300 C40—H40 0.9300
Cl21—C27 1.7462 (18) Cl41—C47 1.7382 (17)
Cl22—C29 1.7400 (16) Cl42—C49 1.7383 (18)
O21—C21 1.2399 (19) O41—C41 1.236 (2)
O22—C24 1.298 (2) O42—C44 1.301 (2)
O22—H22A 0.8200 O42—H42A 0.8200
O23—C24 1.222 (2) O43—C44 1.208 (2)
N21—C21 1.341 (2) N41—C41 1.339 (2)
N21—C25 1.415 (2) N41—C45 1.417 (2)
N21—H21 0.8600 N41—H41 0.8600
C21—C22 1.482 (2) C41—C42 1.470 (2)
C22—C23 1.336 (2) C42—C43 1.329 (2)
C22—H22 0.9300 C42—H42 0.9300
C23—C24 1.482 (2) C43—C44 1.490 (2)
C23—H23 0.9300 C43—H43 0.9300
C25—C26 1.388 (2) C45—C50 1.389 (2)
C25—C30 1.392 (2) C45—C46 1.391 (2)
C26—C27 1.380 (2) C46—C47 1.379 (2)
C26—H26 0.9300 C46—H46 0.9300
C27—C28 1.377 (2) C47—C48 1.371 (3)
C28—C29 1.376 (2) C48—C49 1.386 (3)
C28—H28 0.9300 C48—H48 0.9300
C29—C30 1.376 (2) C49—C50 1.374 (2)
C30—H30 0.9300 C50—H50 0.9300
C14—O12—H12A 109.5 C34—O32—H32A 109.5
C11—N11—C15 127.15 (13) C31—N31—C35 128.06 (14)
C11—N11—H11 116.4 C31—N31—H31 116.0
C15—N11—H11 116.4 C35—N31—H31 116.0
O11—C11—N11 122.01 (15) O31—C31—N31 122.38 (16)
O11—C11—C12 122.74 (15) O31—C31—C32 122.95 (15)
N11—C11—C12 115.25 (13) N31—C31—C32 114.65 (14)
C13—C12—C11 128.48 (15) C33—C32—C31 128.94 (15)
C13—C12—H12 115.8 C33—C32—H32 115.5
C11—C12—H12 115.8 C31—C32—H32 115.5
C12—C13—C14 132.18 (16) C32—C33—C34 131.68 (17)
C12—C13—H13 113.9 C32—C33—H33 114.2
C14—C13—H13 113.9 C34—C33—H33 114.2
O13—C14—O12 119.44 (16) O33—C34—O32 120.35 (16)
O13—C14—C13 119.61 (16) O33—C34—C33 119.38 (17)
O12—C14—C13 120.92 (15) O32—C34—C33 120.27 (15)
C16—C15—C20 120.07 (15) C36—C35—C40 120.31 (16)
C16—C15—N11 122.84 (14) C36—C35—N31 123.30 (15)
C20—C15—N11 117.07 (13) C40—C35—N31 116.38 (15)
C17—C16—C15 118.37 (15) C37—C36—C35 118.29 (16)
C17—C16—H16 120.8 C37—C36—H36 120.9
C15—C16—H16 120.8 C35—C36—H36 120.9
C18—C17—C16 123.10 (15) C36—C37—C38 123.09 (17)
C18—C17—Cl11 118.80 (13) C36—C37—Cl31 118.59 (14)
C16—C17—Cl11 118.10 (13) C38—C37—Cl31 118.31 (14)
C17—C18—C19 117.05 (15) C39—C38—C37 117.04 (17)
C17—C18—H18 121.5 C39—C38—H38 121.5
C19—C18—H18 121.5 C37—C38—H38 121.5
C20—C19—C18 122.50 (15) C40—C39—C38 122.49 (16)
C20—C19—Cl12 119.90 (12) C40—C39—Cl32 118.83 (14)
C18—C19—Cl12 117.58 (12) C38—C39—Cl32 118.68 (14)
C19—C20—C15 118.89 (14) C39—C40—C35 118.75 (16)
C19—C20—H20 120.6 C39—C40—H40 120.6
C15—C20—H20 120.6 C35—C40—H40 120.6
C24—O22—H22A 109.5 C44—O42—H42A 109.5
C21—N21—C25 128.20 (14) C41—N41—C45 126.76 (13)
C21—N21—H21 115.9 C41—N41—H41 116.6
C25—N21—H21 115.9 C45—N41—H41 116.6
O21—C21—N21 122.61 (15) O41—C41—N41 121.40 (16)
O21—C21—C22 122.90 (14) O41—C41—C42 122.65 (15)
N21—C21—C22 114.48 (13) N41—C41—C42 115.95 (13)
C23—C22—C21 128.81 (15) C43—C42—C41 128.27 (15)
C23—C22—H22 115.6 C43—C42—H42 115.9
C21—C22—H22 115.6 C41—C42—H42 115.9
C22—C23—C24 131.60 (16) C42—C43—C44 132.34 (16)
C22—C23—H23 114.2 C42—C43—H43 113.8
C24—C23—H23 114.2 C44—C43—H43 113.8
O23—C24—O22 120.20 (16) O43—C44—O42 119.42 (16)
O23—C24—C23 119.55 (17) O43—C44—C43 119.52 (17)
O22—C24—C23 120.24 (15) O42—C44—C43 121.06 (16)
C26—C25—C30 120.11 (15) C50—C45—C46 119.75 (15)
C26—C25—N21 123.43 (14) C50—C45—N41 117.07 (14)
C30—C25—N21 116.42 (14) C46—C45—N41 123.17 (15)
C27—C26—C25 118.29 (15) C47—C46—C45 118.83 (16)
C27—C26—H26 120.9 C47—C46—H46 120.6
C25—C26—H26 120.9 C45—C46—H46 120.6
C28—C27—C26 123.00 (16) C48—C47—C46 122.88 (16)
C28—C27—Cl21 118.79 (14) C48—C47—Cl41 119.41 (14)
C26—C27—Cl21 118.18 (13) C46—C47—Cl41 117.70 (14)
C29—C28—C27 117.17 (16) C47—C48—C49 116.89 (16)
C29—C28—H28 121.4 C47—C48—H48 121.6
C27—C28—H28 121.4 C49—C48—H48 121.6
C30—C29—C28 122.29 (15) C50—C49—C48 122.50 (16)
C30—C29—Cl22 118.87 (13) C50—C49—Cl42 119.14 (14)
C28—C29—Cl22 118.84 (13) C48—C49—Cl42 118.36 (14)
C29—C30—C25 119.10 (15) C49—C50—C45 119.13 (15)
C29—C30—H30 120.4 C49—C50—H50 120.4
C25—C30—H30 120.4 C45—C50—H50 120.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N11—H11···O33i 0.86 2.07 2.9254 (17) 172
N21—H21···O13 0.86 2.05 2.8748 (18) 161
N31—H31···O43 0.86 2.09 2.9244 (19) 165
N41—H41···O23 0.86 2.07 2.9186 (18) 168
O12—H12A···O11 0.82 1.65 2.4680 (18) 175
O22—H22A···O21 0.82 1.64 2.4613 (17) 177
O32—H32A···O31 0.82 1.66 2.4772 (17) 177
O42—H42A···O41 0.82 1.65 2.4684 (18) 172

Symmetry codes: (i) x+1, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2519).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci.13, 36–45.
  5. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o873. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945. [DOI] [PMC free article] [PubMed]
  7. Kubicki, M. (2004). J. Mol. Struct.698, 67–73.
  8. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  10. Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.
  11. Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051484/dn2519sup1.cif

e-66-00o51-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051484/dn2519Isup2.hkl

e-66-00o51-Isup2.hkl (393.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES