Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o33–o34. doi: 10.1107/S1600536809051009

1,8-Bis(tos­yloxy)-9,10-anthraquinone

Paweł Niedziałkowski a, Damian Trzybiński a, Artur Sikorski a,*, Tadeusz Ossowski a
PMCID: PMC2980119  PMID: 21580139

Abstract

In the crystal structure of the title compound, C28H20O8S2, adjacent anthracene skeletons are parallel or inclined at an angle of 20.6 (1)°. In the mol­ecular structure, the mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1) and 76.8 (1)° with the tosyl rings, and the two terminal benzene rings are oriented at an angle of 74.5 (1)° with respect to each other. The crystal structure is stabilized by inter­molecular C—H⋯O and C—O⋯π inter­actions.

Related literature

For general background to anthraquinones, see: Cheng & Zee-Cheng (1983); Dzierzbicka et al. (2006); Gatto et al. (1996); Hunger (2003); Krapcho et al. (1991); Nakanishi et al. (2005); Zielske (1987); Zon et al. (2003). For related structures, see: Sereda & Akhvlediani (2003); Slouf (2002); Zain & Ng (2005). For mol­ecular inter­actions, see: Bianchi et al. (2004); Santos-Contreras et al. (2007); Spek (2009); Steiner (1999). For the synthesis, see: Ossowski et al. (2000).graphic file with name e-66-00o33-scheme1.jpg

Experimental

Crystal data

  • C28H20O8S2

  • M r = 548.58

  • Monoclinic, Inline graphic

  • a = 8.263 (2) Å

  • b = 27.473 (5) Å

  • c = 11.162 (2) Å

  • β = 100.36 (3)°

  • V = 2492.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.4 × 0.3 × 0.15 mm

Data collection

  • Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer

  • 18048 measured reflections

  • 4371 independent reflections

  • 3374 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.163

  • S = 1.15

  • 4371 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051009/xu2694sup1.cif

e-66-00o33-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051009/xu2694Isup2.hkl

e-66-00o33-Isup2.hkl (214.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O18i 0.93 2.54 3.332 (4) 143
C33—H33⋯O30ii 0.93 2.56 3.241 (4) 130
C36—H36⋯O31iii 0.93 2.58 3.458 (4) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. C–O⋯π inter­actions (Å,°).

C O J O⋯J C⋯J C–O⋯J
C10 O27 Cg1iv 3.688 (3) 3.481 (3) 70.71 (17)
C10 O27 Cg2v 3.452 (3) 3.528 (3) 83.41 (18)

Symmetry codes: (iv) −x, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z + 1. Cg1 and Cg2 are the centroids of the C1—C4/C11/C12 and C5—C8/C13/C14 rings respectively.

Acknowledgments

This work was supported by the Polish State Committee for Scientific Research (grant Nos. R02 0010 06 and DS 8210–4-0177–9).

supplementary crystallographic information

Comment

Anthraquinones, its amino and hydroxy derivatives as the largest group of naturally occurring quinines are of great practical significance in pharmacology, biochemistry and dye chemistry (Hunger, 2003). Anthraquinones are widely widespread in nature, they are occur in bark, or roots of different plants, and display various pharmacological activities such as anti-oxidant, anti-microbial, anti-fungal and anti-viral (Nakanishi et al., 2005). The anthraquinone ring system is often found in antitumor drugs, such as anthracyclines, mitoxantrone, ametantrone and anthrapyrazoles (Cheng & Zee-Cheng, 1983). Its planarity allows an intercalation between base pairs of DNA in the β conformation, while its redox properties are linked to the production of radical species in biological systems. The chemical and biological activity of anthraquinone compounds depends on the different substituents of the planar ring system (Krapcho et al., 1991, Gatto et al., 1996). Anthraquinones are also interesting compounds for the investigations in analytical and electroanalytical chemistry due to the fact that they contain several π electrons, the reducible p-quinone system and are electroactive (Zon et al., 2003). The tosyl group is a very good leaving group, commonly used in organic synthesis in nucleophilic substitution reaction. This phenomenon is applicable to prepare the various aminoanthraquinone from (tosy1oxy)anthraquinone precursors (Zielske, 1987). The 1,8-Bis(tosyloxy)-9,10-anthraquinone is a very convenient and often used precursor to obtain the 1,8-diaminoanthraquinones derivatives (Dzierzbicka et al., 2006).

In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the anthraquinone skeleton are typical for this group of compounds (Sereda & Akhvlediani, 2003; Slouf, 2002; Zain & Ng, 2005).

In the packing of molecules of the title compound, the anthracene skeletons, with an average deviations from planarity of 0.044 (1) Å, are parallel or inclined at an angle of 20.1 (1)°. The mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1)° and 76.8 (1)°, with the tosyl phenyl rings. Those phenyl rings are oriented at the angle of 74.5 (1)° to each other.

The crystal structure is stabilized by C–H···O (Table 1, Fig. 2) and C–O···π (Table 1, Fig. 3) intermolecular interactions. The C–H···O interactions are the hydrogen bond type (Steiner, 1999, Bianchi et al., 2004). All interactions demonstrated were found by PLATON (Spek, 2009).

Experimental

1,8-Bis(tosyloxy)-9,10-anthraquinone was synthesized according to the method reported in the literature (Ossowski et al., 2000). To the stirring mixture of 5.0 g (20.8 mmol) 1,8-dihydroxy-9,10-anthraquinone and 5.22 g (27.4 mmol) of p-toluenesulfonyl chloride in 200 ml dichloromethane was dropwise added over 5 h 15 ml triethylamine in 100 ml dichloromethane. The progress of the reaction was monitored by TLC (SiO2, dichloromethane-petroleum ether 1:1 v/v) until the completion of reaction. The reaction mixture was stirred 6 h at room temperature. The solution was washed with water (3 x 100 ml), the organic phase was dried over MgSO4 and concentrated. The residue was purified by column chromatography on silica gel (dichloromethane-petroleum ether, 1:0.8 v/v) to afford the title compound as a yellow solid. (3.64 g, 28%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in methanol at room temperature (m.p. = 448–450 K; elemental analysis (% found/calculated: C 61.41/61.30, H 3.65/3.67, S 11.69/11.69)).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1 and Cg2 are the centroids of the C1—C4/C11/C12 and C5—C8/C13/C14 rings respectively.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure viewed approximately along c axis. The C–H···O interactions are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x + 1, -y + 1, -x + 2; (ii) x, -y + 3/2, z - 1/2; (iii) x - 1, y, z.]

Fig. 3.

Fig. 3.

The arrangement of the molecules in the crystal structure viewed approximately along c axis. The C–O···π interactions are represented by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1.]

Crystal data

C28H20O8S2 F(000) = 1136
Mr = 548.58 Dx = 1.462 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10108 reflections
a = 8.263 (2) Å θ = 3.2–29.2°
b = 27.473 (5) Å µ = 0.27 mm1
c = 11.162 (2) Å T = 295 K
β = 100.36 (3)° Block, yellow
V = 2492.6 (9) Å3 0.4 × 0.3 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer 3374 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.050
graphite θmax = 25.1°, θmin = 3.2°
Detector resolution: 10.4002 pixels mm-1 h = −9→9
ω scans k = −28→32
18048 measured reflections l = −13→11
4371 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.3332P] where P = (Fo2 + 2Fc2)/3
4371 reflections (Δ/σ)max = 0.002
345 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1135 (3) 0.52337 (10) 0.7763 (2) 0.0427 (6)
C2 0.0657 (4) 0.47974 (11) 0.8207 (3) 0.0575 (8)
H2 0.0301 0.4789 0.8951 0.069*
C3 0.0707 (4) 0.43742 (11) 0.7550 (3) 0.0636 (9)
H3 0.0365 0.4082 0.7843 0.076*
C4 0.1262 (4) 0.43846 (11) 0.6463 (3) 0.0548 (8)
H4 0.1311 0.4098 0.6027 0.066*
C5 0.3761 (3) 0.52607 (12) 0.3386 (2) 0.0511 (7)
H5 0.3765 0.4972 0.2949 0.061*
C6 0.4458 (4) 0.56703 (12) 0.3008 (3) 0.0560 (8)
H6 0.4921 0.5660 0.2308 0.067*
C7 0.4480 (4) 0.60985 (11) 0.3654 (3) 0.0518 (7)
H7 0.5004 0.6372 0.3415 0.062*
C8 0.3724 (3) 0.61198 (10) 0.4653 (2) 0.0412 (6)
C9 0.2008 (3) 0.57330 (9) 0.6073 (2) 0.0393 (6)
C10 0.2362 (3) 0.48179 (10) 0.4841 (3) 0.0469 (7)
C11 0.1676 (3) 0.52607 (9) 0.6648 (2) 0.0391 (6)
C12 0.1754 (3) 0.48225 (9) 0.6010 (3) 0.0430 (6)
C13 0.2964 (3) 0.57106 (9) 0.5061 (2) 0.0385 (6)
C14 0.3048 (3) 0.52732 (10) 0.4419 (2) 0.0419 (6)
O15 0.0972 (2) 0.56551 (7) 0.84323 (17) 0.0486 (5)
S16 0.22980 (10) 0.57749 (3) 0.96370 (6) 0.0532 (3)
O17 0.1499 (3) 0.61401 (9) 1.0209 (2) 0.0762 (7)
O18 0.2768 (3) 0.53273 (8) 1.02503 (19) 0.0653 (6)
C19 0.3976 (3) 0.60173 (10) 0.9090 (2) 0.0449 (6)
C20 0.3917 (4) 0.64943 (11) 0.8680 (3) 0.0541 (8)
H20 0.3000 0.6687 0.8712 0.065*
C21 0.5222 (4) 0.66780 (11) 0.8228 (3) 0.0540 (8)
H21 0.5183 0.6998 0.7955 0.065*
C22 0.6606 (4) 0.63985 (11) 0.8167 (3) 0.0546 (7)
C23 0.6631 (4) 0.59232 (11) 0.8589 (3) 0.0644 (9)
H23 0.7547 0.5730 0.8561 0.077*
C24 0.5337 (4) 0.57324 (11) 0.9046 (3) 0.0582 (8)
H24 0.5376 0.5413 0.9325 0.070*
C25 0.8010 (5) 0.66019 (14) 0.7636 (4) 0.0856 (12)
H25A 0.8561 0.6342 0.7297 0.128*
H25B 0.8771 0.6762 0.8264 0.128*
H25C 0.7595 0.6832 0.7007 0.128*
O26 0.1427 (3) 0.61106 (7) 0.63596 (19) 0.0530 (5)
O27 0.2365 (3) 0.44406 (8) 0.4261 (2) 0.0714 (7)
O28 0.3778 (2) 0.65378 (6) 0.53713 (16) 0.0471 (5)
S29 0.34049 (9) 0.70699 (2) 0.48060 (7) 0.0481 (2)
O30 0.3284 (3) 0.73551 (8) 0.5843 (2) 0.0638 (6)
O31 0.4611 (3) 0.71850 (8) 0.4092 (2) 0.0643 (6)
C32 0.1493 (3) 0.70184 (10) 0.3851 (3) 0.0444 (6)
C33 0.1394 (4) 0.70045 (11) 0.2604 (3) 0.0556 (8)
H33 0.2343 0.7015 0.2266 0.067*
C34 −0.0135 (4) 0.69754 (12) 0.1866 (3) 0.0586 (8)
H34 −0.0206 0.6962 0.1026 0.070*
C35 −0.1561 (4) 0.69661 (10) 0.2349 (3) 0.0525 (7)
C36 −0.1428 (4) 0.69827 (11) 0.3605 (3) 0.0533 (7)
H36 −0.2380 0.6979 0.3941 0.064*
C37 0.0083 (3) 0.70044 (10) 0.4368 (3) 0.0488 (7)
H37 0.0156 0.7010 0.5209 0.059*
C38 −0.3217 (5) 0.69311 (16) 0.1525 (4) 0.0821 (11)
H38A −0.3199 0.7114 0.0795 0.123*
H38B −0.4047 0.7061 0.1936 0.123*
H38C −0.3458 0.6596 0.1320 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0381 (14) 0.0445 (15) 0.0461 (15) 0.0029 (11) 0.0092 (11) 0.0010 (12)
C2 0.0600 (18) 0.0551 (18) 0.0611 (19) −0.0041 (14) 0.0213 (15) 0.0089 (15)
C3 0.065 (2) 0.0446 (17) 0.083 (2) −0.0099 (14) 0.0186 (18) 0.0101 (16)
C4 0.0511 (16) 0.0393 (15) 0.072 (2) −0.0036 (12) 0.0054 (15) −0.0027 (14)
C5 0.0485 (16) 0.0628 (19) 0.0408 (16) 0.0076 (13) 0.0051 (12) −0.0107 (13)
C6 0.0539 (17) 0.077 (2) 0.0393 (16) 0.0067 (15) 0.0131 (13) −0.0016 (14)
C7 0.0536 (16) 0.0576 (18) 0.0457 (16) 0.0011 (13) 0.0127 (13) 0.0055 (13)
C8 0.0388 (13) 0.0450 (15) 0.0383 (14) 0.0039 (11) 0.0029 (11) 0.0020 (11)
C9 0.0376 (13) 0.0422 (14) 0.0372 (14) 0.0016 (11) 0.0045 (11) −0.0010 (11)
C10 0.0436 (14) 0.0440 (16) 0.0504 (16) 0.0015 (11) 0.0017 (12) −0.0101 (13)
C11 0.0345 (13) 0.0406 (14) 0.0412 (14) 0.0019 (10) 0.0046 (10) 0.0015 (11)
C12 0.0365 (13) 0.0406 (15) 0.0504 (16) 0.0005 (11) 0.0041 (11) −0.0014 (12)
C13 0.0364 (13) 0.0456 (14) 0.0321 (13) 0.0053 (11) 0.0029 (10) 0.0001 (11)
C14 0.0381 (13) 0.0480 (15) 0.0375 (14) 0.0056 (11) 0.0010 (11) −0.0053 (12)
O15 0.0510 (11) 0.0515 (11) 0.0462 (11) 0.0089 (8) 0.0163 (9) 0.0006 (8)
S16 0.0651 (5) 0.0582 (5) 0.0396 (4) 0.0068 (3) 0.0181 (3) −0.0027 (3)
O17 0.0945 (18) 0.0811 (17) 0.0624 (14) 0.0122 (13) 0.0391 (13) −0.0169 (12)
O18 0.0802 (15) 0.0693 (14) 0.0469 (12) 0.0063 (11) 0.0126 (11) 0.0156 (10)
C19 0.0543 (16) 0.0428 (15) 0.0372 (14) 0.0068 (12) 0.0070 (12) −0.0058 (11)
C20 0.0512 (17) 0.0468 (16) 0.0612 (19) 0.0107 (13) 0.0018 (14) −0.0073 (14)
C21 0.0632 (19) 0.0402 (15) 0.0557 (18) 0.0016 (13) 0.0025 (15) −0.0025 (13)
C22 0.0587 (18) 0.0450 (16) 0.0602 (18) −0.0005 (13) 0.0111 (15) −0.0095 (13)
C23 0.060 (2) 0.0445 (18) 0.092 (3) 0.0124 (14) 0.0231 (17) −0.0039 (16)
C24 0.066 (2) 0.0404 (16) 0.070 (2) 0.0106 (14) 0.0173 (16) 0.0004 (14)
C25 0.084 (3) 0.064 (2) 0.118 (3) −0.0084 (19) 0.044 (2) −0.004 (2)
O26 0.0669 (13) 0.0389 (11) 0.0587 (12) 0.0081 (9) 0.0259 (10) 0.0001 (9)
O27 0.0901 (17) 0.0553 (13) 0.0714 (15) −0.0082 (11) 0.0213 (13) −0.0257 (12)
O28 0.0543 (11) 0.0439 (11) 0.0429 (11) −0.0036 (8) 0.0085 (8) 0.0006 (8)
S29 0.0439 (4) 0.0417 (4) 0.0596 (5) −0.0070 (3) 0.0114 (3) 0.0020 (3)
O30 0.0678 (14) 0.0496 (12) 0.0720 (14) −0.0069 (10) 0.0070 (11) −0.0169 (10)
O31 0.0490 (12) 0.0625 (14) 0.0855 (16) −0.0099 (10) 0.0230 (11) 0.0141 (12)
C32 0.0452 (15) 0.0402 (14) 0.0500 (16) 0.0007 (11) 0.0143 (12) 0.0055 (12)
C33 0.0544 (17) 0.0613 (18) 0.0564 (18) 0.0063 (14) 0.0241 (14) 0.0098 (14)
C34 0.069 (2) 0.0629 (19) 0.0436 (16) 0.0113 (15) 0.0102 (15) 0.0056 (14)
C35 0.0535 (17) 0.0416 (15) 0.0605 (19) 0.0073 (12) 0.0050 (14) 0.0021 (13)
C36 0.0437 (16) 0.0584 (18) 0.0600 (19) 0.0032 (13) 0.0156 (14) 0.0024 (14)
C37 0.0483 (15) 0.0535 (17) 0.0469 (16) −0.0007 (12) 0.0144 (12) 0.0011 (13)
C38 0.066 (2) 0.099 (3) 0.073 (2) 0.010 (2) −0.0094 (18) −0.001 (2)

Geometric parameters (Å, °)

C1—C2 1.382 (4) C19—C20 1.386 (4)
C1—O15 1.398 (3) C20—C21 1.367 (5)
C1—C11 1.398 (4) C20—H20 0.9300
C2—C3 1.379 (5) C21—C22 1.389 (4)
C2—H2 0.9300 C21—H21 0.9300
C3—C4 1.372 (5) C22—C23 1.387 (4)
C3—H3 0.9300 C22—C25 1.502 (5)
C4—C12 1.394 (4) C23—C24 1.369 (5)
C4—H4 0.9300 C23—H23 0.9300
C5—C6 1.364 (5) C24—H24 0.9300
C5—C14 1.387 (4) C25—H25A 0.9600
C5—H5 0.9300 C25—H25B 0.9600
C6—C7 1.379 (4) C25—H25C 0.9600
C6—H6 0.9300 O28—S29 1.6000 (19)
C7—C8 1.373 (4) S29—O30 1.416 (2)
C7—H7 0.9300 S29—O31 1.419 (2)
C8—O28 1.397 (3) S29—C32 1.745 (3)
C8—C13 1.403 (4) C32—C33 1.380 (4)
C9—O26 1.210 (3) C32—C37 1.390 (4)
C9—C13 1.491 (4) C33—C34 1.381 (4)
C9—C11 1.495 (4) C33—H33 0.9300
C10—O27 1.223 (3) C34—C35 1.381 (5)
C10—C12 1.479 (4) C34—H34 0.9300
C10—C14 1.485 (4) C35—C36 1.387 (4)
C11—C12 1.406 (4) C35—C38 1.508 (4)
C13—C14 1.407 (4) C36—C37 1.380 (4)
O15—S16 1.608 (2) C36—H36 0.9300
S16—O17 1.415 (2) C37—H37 0.9300
S16—O18 1.427 (2) C38—H38A 0.9600
S16—C19 1.745 (3) C38—H38B 0.9600
C19—C24 1.378 (4) C38—H38C 0.9600
C2—C1—O15 117.8 (3) C21—C20—C19 119.2 (3)
C2—C1—C11 121.6 (3) C21—C20—H20 120.4
O15—C1—C11 120.6 (2) C19—C20—H20 120.4
C3—C2—C1 120.2 (3) C20—C21—C22 121.7 (3)
C3—C2—H2 119.9 C20—C21—H21 119.2
C1—C2—H2 119.9 C22—C21—H21 119.2
C4—C3—C2 119.9 (3) C23—C22—C21 117.7 (3)
C4—C3—H3 120.0 C23—C22—C25 121.3 (3)
C2—C3—H3 120.0 C21—C22—C25 121.0 (3)
C3—C4—C12 120.3 (3) C24—C23—C22 121.5 (3)
C3—C4—H4 119.8 C24—C23—H23 119.3
C12—C4—H4 119.8 C22—C23—H23 119.3
C6—C5—C14 120.2 (3) C23—C24—C19 119.5 (3)
C6—C5—H5 119.9 C23—C24—H24 120.2
C14—C5—H5 119.9 C19—C24—H24 120.2
C5—C6—C7 120.6 (3) C22—C25—H25A 109.5
C5—C6—H6 119.7 C22—C25—H25B 109.5
C7—C6—H6 119.7 H25A—C25—H25B 109.5
C8—C7—C6 119.7 (3) C22—C25—H25C 109.5
C8—C7—H7 120.1 H25A—C25—H25C 109.5
C6—C7—H7 120.1 H25B—C25—H25C 109.5
C7—C8—O28 121.9 (2) C8—O28—S29 122.72 (16)
C7—C8—C13 121.7 (3) O30—S29—O31 119.70 (14)
O28—C8—C13 116.2 (2) O30—S29—O28 102.71 (12)
O26—C9—C13 121.7 (2) O31—S29—O28 108.68 (12)
O26—C9—C11 121.2 (2) O30—S29—C32 110.80 (14)
C13—C9—C11 116.9 (2) O31—S29—C32 108.96 (14)
O27—C10—C12 120.5 (3) O28—S29—C32 104.82 (11)
O27—C10—C14 120.6 (3) C33—C32—C37 121.0 (3)
C12—C10—C14 118.8 (2) C33—C32—S29 120.1 (2)
C1—C11—C12 117.2 (2) C37—C32—S29 118.9 (2)
C1—C11—C9 122.8 (2) C32—C33—C34 119.0 (3)
C12—C11—C9 119.8 (2) C32—C33—H33 120.5
C4—C12—C11 120.8 (3) C34—C33—H33 120.5
C4—C12—C10 118.7 (3) C33—C34—C35 121.4 (3)
C11—C12—C10 120.5 (2) C33—C34—H34 119.3
C8—C13—C14 116.9 (2) C35—C34—H34 119.3
C8—C13—C9 122.8 (2) C34—C35—C36 118.4 (3)
C14—C13—C9 120.2 (2) C34—C35—C38 120.5 (3)
C5—C14—C13 120.8 (3) C36—C35—C38 121.1 (3)
C5—C14—C10 119.1 (2) C37—C36—C35 121.5 (3)
C13—C14—C10 120.1 (2) C37—C36—H36 119.2
C1—O15—S16 120.01 (16) C35—C36—H36 119.2
O17—S16—O18 120.23 (15) C36—C37—C32 118.6 (3)
O17—S16—O15 102.67 (14) C36—C37—H37 120.7
O18—S16—O15 108.09 (12) C32—C37—H37 120.7
O17—S16—C19 110.62 (15) C35—C38—H38A 109.5
O18—S16—C19 109.39 (14) C35—C38—H38B 109.5
O15—S16—C19 104.49 (12) H38A—C38—H38B 109.5
C24—C19—C20 120.4 (3) C35—C38—H38C 109.5
C24—C19—S16 120.0 (2) H38A—C38—H38C 109.5
C20—C19—S16 119.6 (2) H38B—C38—H38C 109.5
O15—C1—C2—C3 176.5 (3) C12—C10—C14—C13 −6.3 (4)
C11—C1—C2—C3 0.1 (4) C2—C1—O15—S16 77.9 (3)
C1—C2—C3—C4 1.3 (5) C11—C1—O15—S16 −105.6 (2)
C2—C3—C4—C12 −0.9 (5) C1—O15—S16—O17 −165.1 (2)
C14—C5—C6—C7 0.8 (4) C1—O15—S16—O18 −37.1 (2)
C5—C6—C7—C8 −3.2 (4) C1—O15—S16—C19 79.4 (2)
C6—C7—C8—O28 176.9 (2) O17—S16—C19—C24 148.7 (2)
C6—C7—C8—C13 1.9 (4) O18—S16—C19—C24 14.1 (3)
C2—C1—C11—C12 −1.6 (4) O15—S16—C19—C24 −101.4 (2)
O15—C1—C11—C12 −177.9 (2) O17—S16—C19—C20 −32.5 (3)
C2—C1—C11—C9 172.5 (2) O18—S16—C19—C20 −167.1 (2)
O15—C1—C11—C9 −3.9 (4) O15—S16—C19—C20 77.3 (2)
O26—C9—C11—C1 −19.9 (4) C24—C19—C20—C21 0.2 (4)
C13—C9—C11—C1 165.1 (2) S16—C19—C20—C21 −178.6 (2)
O26—C9—C11—C12 154.0 (3) C19—C20—C21—C22 0.2 (5)
C13—C9—C11—C12 −21.0 (3) C20—C21—C22—C23 −0.4 (5)
C3—C4—C12—C11 −0.7 (4) C20—C21—C22—C25 178.3 (3)
C3—C4—C12—C10 179.4 (3) C21—C22—C23—C24 0.3 (5)
C1—C11—C12—C4 1.9 (4) C25—C22—C23—C24 −178.4 (4)
C9—C11—C12—C4 −172.4 (2) C22—C23—C24—C19 0.0 (5)
C1—C11—C12—C10 −178.1 (2) C20—C19—C24—C23 −0.3 (5)
C9—C11—C12—C10 7.6 (4) S16—C19—C24—C23 178.5 (3)
O27—C10—C12—C4 3.1 (4) C7—C8—O28—S29 47.3 (3)
C14—C10—C12—C4 −173.8 (2) C13—C8—O28—S29 −137.4 (2)
O27—C10—C12—C11 −176.9 (2) C8—O28—S29—O30 169.05 (19)
C14—C10—C12—C11 6.3 (4) C8—O28—S29—O31 −63.2 (2)
C7—C8—C13—C14 1.6 (4) C8—O28—S29—C32 53.2 (2)
O28—C8—C13—C14 −173.7 (2) O30—S29—C32—C33 144.9 (2)
C7—C8—C13—C9 −174.4 (2) O31—S29—C32—C33 11.2 (3)
O28—C8—C13—C9 10.3 (3) O28—S29—C32—C33 −105.0 (2)
O26—C9—C13—C8 22.0 (4) O30—S29—C32—C37 −33.5 (3)
C11—C9—C13—C8 −163.1 (2) O31—S29—C32—C37 −167.2 (2)
O26—C9—C13—C14 −154.0 (2) O28—S29—C32—C37 76.6 (2)
C11—C9—C13—C14 21.0 (3) C37—C32—C33—C34 −0.1 (4)
C6—C5—C14—C13 2.8 (4) S29—C32—C33—C34 −178.5 (2)
C6—C5—C14—C10 −177.4 (3) C32—C33—C34—C35 0.8 (5)
C8—C13—C14—C5 −4.0 (3) C33—C34—C35—C36 −0.5 (4)
C9—C13—C14—C5 172.2 (2) C33—C34—C35—C38 −179.6 (3)
C8—C13—C14—C10 176.3 (2) C34—C35—C36—C37 −0.5 (4)
C9—C13—C14—C10 −7.6 (3) C38—C35—C36—C37 178.6 (3)
O27—C10—C14—C5 −2.9 (4) C35—C36—C37—C32 1.1 (4)
C12—C10—C14—C5 173.9 (2) C33—C32—C37—C36 −0.8 (4)
O27—C10—C14—C13 176.9 (2) S29—C32—C37—C36 177.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C24—H24···O18i 0.93 2.54 3.332 (4) 143
C33—H33···O30ii 0.93 2.56 3.241 (4) 130
C36—H36···O31iii 0.93 2.58 3.458 (4) 156

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z−1/2; (iii) x−1, y, z.

Table 2 C–O···π interactions (Å,°).

C O J O···J C···J C–O···J
C10 O27 Cg1iv 3.688 (3) 3.481 (3) 70.71 (17)
C10 O27 Cg2v 3.452 (3) 3.528 (3) 83.41 (18)

Symmetry codes: (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C1-C4/C11/C12 and C5-C8/C13/C14 rings respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2694).

References

  1. Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [DOI] [PubMed]
  2. Cheng, C. C. & Zee-Cheng, R. K. Y. (1983). Prog. Med. Chem.20, 83–118. [DOI] [PubMed]
  3. Dzierzbicka, K., Sowiński, P. & Kołodziejczyk, A. M. (2006). J. Pept. Sci.12, 670–678. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem.39, 3114–3122. [DOI] [PubMed]
  6. Hunger, K. (2003). Industrial Dyes Chemistry, Properties, Applications Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  7. Krapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem.34, 2373–2380. [DOI] [PubMed]
  8. Nakanishi, F., Nagasawa, Y., Kabaya, Y., Sekimoto, H. & Shimomura, K. (2005). Plant Phys. Biochem.43, 921–928. [DOI] [PubMed]
  9. Ossowski, T., Kira, J., Rogowska, D., Warmke, H. & Młodzianowski, J. (2000). J. Chem. Soc. Dalton Trans. pp. 689–696.
  10. Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242. [DOI] [PubMed]
  12. Sereda, G. A. & Akhvlediani, D. G. (2003). Tetrahedron Lett.44, 9125–9126.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Slouf, M. (2002). J. Mol. Struct.611, 139–146.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Steiner, T. (1999). Chem. Commun. pp. 313–314.
  17. Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, o2921–o2923.
  18. Zielske, A. G. (1987). J. Org. Chem.52, 1305–1309.
  19. Zon, A., Palys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579–585.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051009/xu2694sup1.cif

e-66-00o33-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051009/xu2694Isup2.hkl

e-66-00o33-Isup2.hkl (214.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES