Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):m13. doi: 10.1107/S1600536809051770

Tetra­kis(2-amino­thia­zole-κN 3)dichloridocadmium(II)

Chong-Hyeak Kim a, Inn Hoe Kim b,*
PMCID: PMC2980125  PMID: 21579914

Abstract

In the title complex, [CdCl2(C3H4N2S)4],the CdII atom has an trans-Cl2N4 octa­hedral coordination geometry defined by four N atoms derived from the four 2-amino­thia­zole ligands and two Cl atoms. The amino groups participate in intra- and inter­molecular N—H⋯N and N—H⋯Cl hydrogen bonding that stabilizes both the mol­ecular and crystal structures.

Related literature

For the coordination properties of heterocycles, see: Raper (1994); Karlin & Zubieta (1983). For the structures of related amino­thia­zole complexes, see: Batı et al. (2006); Davarski et al. (1996); Macíček & Davarski (1993); Maniukiewicz (2004); Raper et al. (1981); Suh et al. (2005, 2007, 2009).graphic file with name e-66-00m13-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C3H4N2S)4]

  • M r = 583.87

  • Monoclinic, Inline graphic

  • a = 8.6056 (1) Å

  • b = 15.2838 (2) Å

  • c = 16.2097 (2) Å

  • β = 103.605 (1)°

  • V = 2072.18 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 296 K

  • 0.40 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.544, T max = 0.870

  • 21163 measured reflections

  • 5159 independent reflections

  • 4532 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.052

  • S = 1.05

  • 5159 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051770/tk2590sup1.cif

e-66-00m13-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051770/tk2590Isup2.hkl

e-66-00m13-Isup2.hkl (252.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16A⋯N23 0.86 2.63 3.277 (2) 133
N16—H16A⋯Cl1 0.86 2.81 3.3903 (19) 126
N16—H16B⋯Cl2i 0.86 2.52 3.2941 (18) 151
N26—H26A⋯Cl2 0.86 2.41 3.1722 (17) 149
N26—H26B⋯Cl1ii 0.86 2.51 3.3300 (16) 161
N36—H36A⋯N43 0.86 2.61 3.324 (2) 142
N36—H36B⋯Cl1iii 0.86 2.63 3.3810 (18) 147
N46—H46A⋯Cl1 0.86 2.44 3.2135 (18) 150
N46—H46B⋯N36iv 0.86 2.56 3.417 (2) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Some heterocyclic organic compounds have biologically useful properties, having anti-tumour, anti-fungal, and anti-infection activities. Amongst these, aminothiazoles are an important type of N,S-containing heterocycle (Raper, 1994). The N and S atoms play a key role in the coordination of metals at the active sites of various metallobiomelecules (Karlin & Zubieta, 1983). The crystal structures of aminothiazole complexes have attracted recent interest (Suh et al., 2005, 2007, 2009; Batı et al., 2006; Davarski et al., 1996; Macíček & Davarski, 1993; Maniukiewicz, 2004; Raper et al., 1981). Herein, we report the synthesis and crystal structure of the title complex, (I).

As shown in Fig. 1, the complex (I) comprises discrete Cd(C3H4N2S)4Cl2 molecules. The octahedral CdII coordination environment is defined by four N atoms derived from four neutral monodentate 2-aminothiazole ligands and two Cl atoms [Cd—Cl = 2.6294 (5) and 2.6560 (4) Å, and Cd—N = 2.3569 (14)-2.4432 (14) Å]. The Cl atoms occupy trans positions. The amino groups participate in intra- and inter-molecular N—H···N and N—H···Cl hydrogen bonds (Table 1). In the crystal structure molecules are interconnected by these interactions into a three-dimensional hydrogen bond network (Fig. 2).

Experimental

A water–ethanol (1:1) solution (40 ml) of 2-aminothiazole (5 mmol) was added dropwise to a water–ethanol (1:1) solution (40 ml) of CdCl2.2.5H2O (2 mmol) with stirring. The small amount of precipitates formed from the mixed solution were filtered off. The filtered solution was allowed to stand at room temperature. After several days, yellow blocks were obtained. Analysis found: C 24.95, H 2.74, N 19.11, S 21.72, Cd 19.30%; C12H16CdCl2N8S4 requires: C 24.68, H 2.76, N 19.20, S 21.96, Cl 12.14, Cd 19.25%.

Refinement

Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A view of the unit cell contents of (I). The C–H atoms have been omitted for reasons of clarity (dashed lines).

Crystal data

[CdCl2(C3H4N2S)4] F(000) = 1160
Mr = 583.87 Dx = 1.872 Mg m3Dm = 1.87 Mg m3Dm measured by flotation method
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5290 reflections
a = 8.6056 (1) Å θ = 2.7–28.3°
b = 15.2838 (2) Å µ = 1.73 mm1
c = 16.2097 (2) Å T = 296 K
β = 103.605 (1)° Block, yellow
V = 2072.18 (4) Å3 0.40 × 0.19 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 5159 independent reflections
Radiation source: fine-focus sealed tube 4532 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.544, Tmax = 0.87 k = −20→20
21163 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.6132P] where P = (Fo2 + 2Fc2)/3
5159 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.237289 (14) 0.127887 (8) 0.242806 (7) 0.02555 (5)
Cl1 0.41984 (5) 0.15665 (3) 0.13431 (3) 0.03443 (10)
Cl2 0.05073 (6) 0.10433 (3) 0.34816 (3) 0.03723 (11)
S11 0.72017 (6) −0.00335 (3) 0.42080 (3) 0.04305 (13)
C12 0.6028 (2) 0.07360 (12) 0.35499 (11) 0.0312 (4)
N13 0.44963 (17) 0.05509 (9) 0.33585 (9) 0.0304 (3)
C14 0.4223 (2) −0.02238 (12) 0.37465 (12) 0.0369 (4)
H14A 0.3200 −0.0453 0.3682 0.044*
C15 0.5505 (3) −0.06232 (13) 0.42170 (13) 0.0432 (5)
H15 0.5485 −0.1146 0.4508 0.052*
N16 0.6685 (2) 0.14549 (12) 0.33020 (12) 0.0482 (5)
H16A 0.6089 0.1839 0.2992 0.058*
H16B 0.7702 0.1532 0.3453 0.058*
S21 0.44426 (7) 0.38898 (3) 0.41822 (3) 0.04409 (13)
C22 0.3558 (2) 0.28774 (11) 0.39147 (11) 0.0292 (4)
N23 0.34496 (18) 0.26409 (9) 0.31227 (9) 0.0295 (3)
C24 0.4114 (2) 0.32847 (12) 0.27081 (12) 0.0367 (4)
H24A 0.4153 0.3226 0.2142 0.044*
C25 0.4692 (3) 0.39916 (14) 0.31605 (13) 0.0440 (5)
H25 0.5160 0.4468 0.2956 0.053*
N26 0.3052 (2) 0.23949 (10) 0.44936 (10) 0.0400 (4)
H26A 0.2620 0.1892 0.4356 0.048*
H26B 0.3159 0.2589 0.5002 0.048*
S31 −0.24063 (6) 0.26745 (4) 0.06541 (4) 0.04824 (14)
C32 −0.1262 (2) 0.18601 (12) 0.12468 (11) 0.0327 (4)
N33 0.02729 (18) 0.20338 (10) 0.14653 (9) 0.0311 (3)
C34 0.0573 (2) 0.28381 (12) 0.11430 (12) 0.0384 (4)
H34A 0.1601 0.3066 0.1230 0.046*
C35 −0.0703 (3) 0.32678 (14) 0.06998 (13) 0.0467 (5)
H35 −0.0670 0.3814 0.0451 0.056*
N36 −0.1933 (2) 0.10964 (11) 0.14150 (12) 0.0458 (4)
H36A −0.1340 0.0685 0.1683 0.055*
H36B −0.2950 0.1024 0.1254 0.055*
S41 0.07311 (8) −0.15017 (3) 0.08737 (4) 0.05010 (14)
C42 0.1437 (2) −0.04377 (12) 0.10337 (11) 0.0319 (4)
N43 0.13773 (18) −0.01062 (9) 0.17752 (9) 0.0309 (3)
C44 0.0725 (2) −0.07152 (12) 0.22319 (12) 0.0385 (4)
H44A 0.0581 −0.0591 0.2771 0.046*
C45 0.0316 (3) −0.14861 (13) 0.18614 (13) 0.0446 (5)
H45 −0.0129 −0.1948 0.2101 0.054*
N46 0.1983 (2) −0.00158 (11) 0.04363 (10) 0.0455 (4)
H46A 0.2329 0.0512 0.0524 0.055*
H46B 0.1987 −0.0272 −0.0035 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.02192 (7) 0.02708 (7) 0.02791 (7) 0.00039 (5) 0.00638 (5) 0.00172 (5)
Cl1 0.0292 (2) 0.0456 (3) 0.0302 (2) −0.00291 (19) 0.01048 (17) 0.00135 (18)
Cl2 0.0292 (2) 0.0449 (3) 0.0411 (2) −0.00374 (19) 0.01530 (19) −0.0022 (2)
S11 0.0319 (3) 0.0432 (3) 0.0476 (3) 0.0073 (2) −0.0034 (2) 0.0046 (2)
C12 0.0268 (9) 0.0340 (9) 0.0320 (9) 0.0029 (7) 0.0052 (7) −0.0023 (7)
N13 0.0257 (7) 0.0313 (8) 0.0331 (8) 0.0016 (6) 0.0047 (6) 0.0035 (6)
C14 0.0342 (10) 0.0359 (10) 0.0395 (10) −0.0050 (8) 0.0063 (8) 0.0053 (8)
C15 0.0451 (12) 0.0348 (10) 0.0462 (11) 0.0008 (9) 0.0033 (9) 0.0097 (9)
N16 0.0252 (9) 0.0486 (10) 0.0682 (12) −0.0030 (7) 0.0054 (8) 0.0154 (9)
S21 0.0559 (3) 0.0367 (3) 0.0391 (3) −0.0151 (2) 0.0100 (2) −0.0074 (2)
C22 0.0275 (9) 0.0268 (8) 0.0313 (9) 0.0013 (7) 0.0028 (7) −0.0005 (7)
N23 0.0310 (8) 0.0275 (7) 0.0295 (7) −0.0006 (6) 0.0063 (6) 0.0009 (6)
C24 0.0377 (10) 0.0407 (11) 0.0310 (9) −0.0061 (8) 0.0066 (8) 0.0035 (8)
C25 0.0495 (13) 0.0413 (11) 0.0411 (11) −0.0136 (9) 0.0103 (9) 0.0042 (9)
N26 0.0550 (11) 0.0371 (9) 0.0281 (8) −0.0106 (8) 0.0101 (7) −0.0006 (7)
S31 0.0343 (3) 0.0509 (3) 0.0531 (3) 0.0143 (2) −0.0025 (2) 0.0033 (2)
C32 0.0275 (9) 0.0375 (10) 0.0317 (9) 0.0055 (8) 0.0045 (7) −0.0035 (8)
N33 0.0261 (8) 0.0324 (8) 0.0330 (8) 0.0028 (6) 0.0036 (6) 0.0023 (6)
C34 0.0361 (11) 0.0364 (10) 0.0414 (10) −0.0012 (8) 0.0067 (8) 0.0057 (8)
C35 0.0504 (13) 0.0384 (11) 0.0483 (12) 0.0074 (10) 0.0056 (10) 0.0097 (9)
N36 0.0262 (9) 0.0461 (10) 0.0622 (11) −0.0022 (7) 0.0045 (8) 0.0047 (8)
S41 0.0633 (4) 0.0360 (3) 0.0516 (3) −0.0144 (3) 0.0148 (3) −0.0128 (2)
C42 0.0263 (9) 0.0302 (9) 0.0369 (10) −0.0011 (7) 0.0029 (7) −0.0014 (7)
N43 0.0302 (8) 0.0266 (7) 0.0352 (8) −0.0018 (6) 0.0064 (6) −0.0013 (6)
C44 0.0405 (11) 0.0370 (10) 0.0380 (10) −0.0067 (8) 0.0096 (8) 0.0005 (8)
C45 0.0468 (13) 0.0361 (10) 0.0497 (12) −0.0121 (9) 0.0086 (10) 0.0030 (9)
N46 0.0569 (12) 0.0439 (10) 0.0374 (9) −0.0117 (8) 0.0147 (8) −0.0049 (7)

Geometric parameters (Å, °)

Cd—N13 2.3569 (14) C25—H25 0.9300
Cd—N33 2.3886 (14) N26—H26A 0.8600
Cd—N43 2.4308 (14) N26—H26B 0.8600
Cd—N23 2.4432 (14) S31—C35 1.711 (2)
Cd—Cl2 2.6294 (5) S31—C32 1.7310 (19)
Cd—Cl1 2.6560 (4) C32—N33 1.312 (2)
S11—C15 1.719 (2) C32—N36 1.358 (2)
S11—C12 1.7420 (18) N33—C34 1.384 (2)
C12—N13 1.312 (2) C34—C35 1.335 (3)
C12—N16 1.340 (2) C34—H34A 0.9300
N13—C14 1.387 (2) C35—H35 0.9300
C14—C15 1.332 (3) N36—H36A 0.8600
C14—H14A 0.9300 N36—H36B 0.8600
C15—H15 0.9300 S41—C45 1.721 (2)
N16—H16A 0.8600 S41—C42 1.7339 (18)
N16—H16B 0.8600 C42—N43 1.316 (2)
S21—C25 1.726 (2) C42—N46 1.337 (2)
S21—C22 1.7341 (18) N43—C44 1.387 (2)
C22—N23 1.316 (2) C44—C45 1.332 (3)
C22—N26 1.344 (2) C44—H44A 0.9300
N23—C24 1.388 (2) C45—H45 0.9300
C24—C25 1.335 (3) N46—H46A 0.8600
C24—H24A 0.9300 N46—H46B 0.8600
N13—Cd—N33 178.41 (5) N23—C24—H24A 121.6
N13—Cd—N43 90.48 (5) C24—C25—S21 109.85 (15)
N33—Cd—N43 90.07 (5) C24—C25—H25 125.1
N13—Cd—N23 87.39 (5) S21—C25—H25 125.1
N33—Cd—N23 92.07 (5) C22—N26—H26A 120.0
N43—Cd—N23 177.85 (5) C22—N26—H26B 120.0
N13—Cd—Cl2 91.13 (4) H26A—N26—H26B 120.0
N33—Cd—Cl2 90.39 (4) C35—S31—C32 89.29 (10)
N43—Cd—Cl2 87.53 (4) N33—C32—N36 124.62 (17)
N23—Cd—Cl2 92.33 (4) N33—C32—S31 114.17 (14)
N13—Cd—Cl1 90.66 (4) N36—C32—S31 121.10 (14)
N33—Cd—Cl1 87.82 (4) C32—N33—C34 110.08 (15)
N43—Cd—Cl1 93.36 (4) C32—N33—Cd 129.62 (12)
N23—Cd—Cl1 86.84 (4) C34—N33—Cd 119.74 (12)
Cl2—Cd—Cl1 177.991 (15) C35—C34—N33 115.94 (19)
C15—S11—C12 89.30 (9) C35—C34—H34A 122.0
N13—C12—N16 125.25 (17) N33—C34—H34A 122.0
N13—C12—S11 113.89 (14) C34—C35—S31 110.51 (16)
N16—C12—S11 120.83 (14) C34—C35—H35 124.7
C12—N13—C14 110.17 (15) S31—C35—H35 124.7
C12—N13—Cd 129.36 (12) C32—N36—H36A 120.0
C14—N13—Cd 120.32 (12) C32—N36—H36B 120.0
C15—C14—N13 116.44 (18) H36A—N36—H36B 120.0
C15—C14—H14A 121.8 C45—S41—C42 89.42 (9)
N13—C14—H14A 121.8 N43—C42—N46 124.85 (17)
C14—C15—S11 110.20 (15) N43—C42—S41 114.21 (14)
C14—C15—H15 124.9 N46—C42—S41 120.94 (14)
S11—C15—H15 124.9 C42—N43—C44 109.66 (15)
C12—N16—H16A 120.0 C42—N43—Cd 130.33 (12)
C12—N16—H16B 120.0 C44—N43—Cd 119.83 (11)
H16A—N16—H16B 120.0 C45—C44—N43 116.75 (18)
C25—S21—C22 89.25 (9) C45—C44—H44A 121.6
N23—C22—N26 124.78 (16) N43—C44—H44A 121.6
N23—C22—S21 114.54 (13) C44—C45—S41 109.95 (15)
N26—C22—S21 120.69 (13) C44—C45—H45 125.0
C22—N23—C24 109.57 (15) S41—C45—H45 125.0
C22—N23—Cd 128.01 (11) C42—N46—H46A 120.0
C24—N23—Cd 122.38 (11) C42—N46—H46B 120.0
C25—C24—N23 116.79 (17) H46A—N46—H46B 120.0
C25—C24—H24A 121.6
C15—S11—C12—N13 −0.25 (15) C35—S31—C32—N33 0.69 (15)
C15—S11—C12—N16 177.77 (17) C35—S31—C32—N36 −175.75 (17)
N16—C12—N13—C14 −177.55 (19) N36—C32—N33—C34 175.40 (18)
S11—C12—N13—C14 0.36 (19) S31—C32—N33—C34 −0.9 (2)
N16—C12—N13—Cd 7.0 (3) N36—C32—N33—Cd −13.3 (3)
S11—C12—N13—Cd −175.09 (8) S31—C32—N33—Cd 170.40 (8)
N43—Cd—N13—C12 131.98 (16) N43—Cd—N33—C32 47.14 (16)
N23—Cd—N13—C12 −48.20 (15) N23—Cd—N33—C32 −132.74 (16)
Cl2—Cd—N13—C12 −140.48 (15) Cl2—Cd—N33—C32 −40.39 (15)
Cl1—Cd—N13—C12 38.61 (15) Cl1—Cd—N33—C32 140.51 (15)
N43—Cd—N13—C14 −43.08 (13) N43—Cd—N33—C34 −142.28 (14)
N23—Cd—N13—C14 136.74 (13) N23—Cd—N33—C34 37.84 (14)
Cl2—Cd—N13—C14 44.46 (13) Cl2—Cd—N33—C34 130.19 (13)
Cl1—Cd—N13—C14 −136.45 (13) Cl1—Cd—N33—C34 −48.91 (13)
C12—N13—C14—C15 −0.3 (2) C32—N33—C34—C35 0.7 (2)
Cd—N13—C14—C15 175.60 (14) Cd—N33—C34—C35 −171.58 (14)
N13—C14—C15—S11 0.1 (2) N33—C34—C35—S31 −0.2 (2)
C12—S11—C15—C14 0.05 (17) C32—S31—C35—C34 −0.27 (17)
C25—S21—C22—N23 −0.46 (15) C45—S41—C42—N43 0.69 (15)
C25—S21—C22—N26 179.14 (17) C45—S41—C42—N46 −179.30 (17)
N26—C22—N23—C24 −178.86 (18) N46—C42—N43—C44 179.12 (18)
S21—C22—N23—C24 0.72 (19) S41—C42—N43—C44 −0.87 (19)
N26—C22—N23—Cd −1.1 (3) N46—C42—N43—Cd −5.8 (3)
S21—C22—N23—Cd 178.50 (8) S41—C42—N43—Cd 174.18 (8)
N13—Cd—N23—C22 −64.98 (15) N13—Cd—N43—C42 −105.72 (16)
N33—Cd—N23—C22 116.52 (15) N33—Cd—N43—C42 72.79 (16)
Cl2—Cd—N23—C22 26.04 (15) Cl2—Cd—N43—C42 163.17 (16)
Cl1—Cd—N23—C22 −155.79 (15) Cl1—Cd—N43—C42 −15.03 (16)
N13—Cd—N23—C24 112.54 (14) N13—Cd—N43—C44 68.91 (14)
N33—Cd—N23—C24 −65.97 (14) N33—Cd—N43—C44 −112.58 (14)
Cl2—Cd—N23—C24 −156.44 (13) Cl2—Cd—N43—C44 −22.20 (13)
Cl1—Cd—N23—C24 21.73 (13) Cl1—Cd—N43—C44 159.60 (13)
C22—N23—C24—C25 −0.7 (2) C42—N43—C44—C45 0.7 (2)
Cd—N23—C24—C25 −178.63 (15) Cd—N43—C44—C45 −174.98 (15)
N23—C24—C25—S21 0.4 (2) N43—C44—C45—S41 −0.2 (2)
C22—S21—C25—C24 0.04 (17) C42—S41—C45—C44 −0.28 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N16—H16A···N23 0.86 2.63 3.277 (2) 133
N16—H16A···Cl1 0.86 2.81 3.3903 (19) 126
N16—H16B···Cl2i 0.86 2.52 3.2941 (18) 151
N26—H26A···Cl2 0.86 2.41 3.1722 (17) 149
N26—H26B···Cl1ii 0.86 2.51 3.3300 (16) 161
N36—H36A···N43 0.86 2.61 3.324 (2) 142
N36—H36B···Cl1iii 0.86 2.63 3.3810 (18) 147
N46—H46A···Cl1 0.86 2.44 3.2135 (18) 150
N46—H46B···N36iv 0.86 2.56 3.417 (2) 177

Symmetry codes: (i) x+1, y, z; (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2590).

References

  1. Batı, H., Yüksektepe, Ç., Çalı˛skan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313–m2315.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Davarski, K., Macicek, J. & Konovalov, L. (1996). J. Coord. Chem.38, 123–134.
  4. Karlin, K. D. & Zubieta, J. (1983). Biological and Inorganic Copper Chemistry New York: Adenine Press.
  5. Macíček, J. & Davarski, K. (1993). Acta Cryst. C49, 592–593.
  6. Maniukiewicz, W. (2004). Acta Cryst. E60, m340–m341.
  7. Raper, E. S. (1994). Coord. Chem. Rev.129, 91–151.
  8. Raper, E. S., Oughtred, R. E., Nowell, I. W. & March, L. A. (1981). Acta Cryst. B37, 928–930.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol.18, 386–390.
  11. Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.
  12. Suh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051770/tk2590sup1.cif

e-66-00m13-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051770/tk2590Isup2.hkl

e-66-00m13-Isup2.hkl (252.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES