Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o23. doi: 10.1107/S1600536809051113

(E)-N′-(3,4,5-Trimethoxy­benzyl­idene)-2-(8-quinol­yloxy)acetohydrazide methanol solvate

Ling Zeng a,*
PMCID: PMC2980132  PMID: 21580111

Abstract

In the title compound, C21H21N3O5·CH4O, the quinoline plane and the benzene ring form a dihedral angle of 3.6 (2)°. The methanol solvent mol­ecule is linked with the acetohydrazide mol­ecule via O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds help to consolidate the crystal packing, which also exhibits π–π inter­actions, as indicated by short distances of 3.739 (4) Å between the centroids of the aromatic rings.

Related literature

For applications of 8-hydroxy­quinoline derivatives, see: Park et al. (2006); Karmakar et al. (2007). For a related structure, see Wang et al. (2009).graphic file with name e-66-00o23-scheme1.jpg

Experimental

Crystal data

  • C21H21N3O5·CH4O

  • M r = 427.45

  • Orthorhombic, Inline graphic

  • a = 13.385 (4) Å

  • b = 4.9005 (15) Å

  • c = 31.89 (1) Å

  • V = 2091.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.18 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.982, T max = 0.988

  • 10056 measured reflections

  • 1879 independent reflections

  • 1263 reflections with I > 2σ(I)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.099

  • S = 1.08

  • 1879 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051113/cv2668sup1.cif

e-66-00o23-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051113/cv2668Isup2.hkl

e-66-00o23-Isup2.hkl (92.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N1 0.82 2.02 2.814 (5) 164
N2—H4⋯O6 0.86 2.30 3.070 (4) 149
C3—H3⋯O5i 0.93 2.45 3.340 (6) 159
C5—H5⋯O4i 0.93 2.52 3.411 (6) 160
C19—H19A⋯O2ii 0.96 2.37 3.196 (6) 144
C21—H21A⋯O3iii 0.96 2.57 3.265 (5) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Synthesis of 8-hydroxyquinoline and its derivatives have attracted a great interest due to their biological activities and applications in coordination chemistry (Park et al., 2006; Karmakar et al., 2007). In our search for new extractants of metal ions and biologically active materials, the title compound, (I), has been synthesized. We report here its crystal structure.

All bond lengths and angles are normal and comparable to those observed in the related compound (E)-N'-(2,5-dimethoxybenzylidene)-2-(8- quinolyloxy)acetohydrazide methanol solvate (Wang et al., 2009). The molecule is nearly planar, with a dihedral angle of the benzene ring and the quinoline ring of 3.6 (2)°. The methanol solvent molecule forms an O—H···N hydrogen bond to the quinoline ring system and accepts an N—H···O hydrogen bond from the hydrazide NH group. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) help to consolidate the crystal packing.

Experimental

3,4,5-Trimethoxybenzaldehyde (0.1 mmol, 19.6 mg) and 2-(quinolin-8-yloxy) acetohydrazide (21.8 mg, 0.1 mmol), were dissolved in methanol (20 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of six days at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map, then placed in idealized positions (C—H 0.93–0.97 Å, O—H 0.82–0.85 Å, N—H 0.86 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) and 1.5Ueq(O). In the absence of atoms heavier than Si, the absolute structure can not be reliably determined, so 1784 Friedel pairs were averaged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Crystal data

C21H21N3O5·CH4O F(000) = 904
Mr = 427.45 Dx = 1.357 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 786 reflections
a = 13.385 (4) Å θ = 2.6–17.8°
b = 4.9005 (15) Å µ = 0.10 mm1
c = 31.89 (1) Å T = 295 K
V = 2091.8 (11) Å3 Block, colourless
Z = 4 0.18 × 0.15 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1879 independent reflections
Radiation source: fine-focus sealed tube 1263 reflections with I > 2σ(I)
graphite Rint = 0.077
φ and ω scans θmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→13
Tmin = 0.982, Tmax = 0.988 k = −5→5
10056 measured reflections l = −37→37

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.0119P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1879 reflections Δρmax = 0.15 e Å3
283 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0111 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6229 (2) 0.7115 (6) 0.13448 (8) 0.0497 (8)
O2 0.6522 (3) 1.1590 (8) 0.22093 (11) 0.0819 (12)
O3 0.1718 (2) 0.3242 (6) 0.34960 (8) 0.0495 (8)
O4 0.2323 (2) 0.6336 (6) 0.41318 (8) 0.0448 (8)
O5 0.3852 (2) 0.9783 (6) 0.40569 (9) 0.0515 (9)
O6 0.4246 (3) 0.4033 (8) 0.16176 (12) 0.0776 (12)
H6 0.4642 0.3998 0.1421 0.116*
N1 0.5266 (3) 0.3563 (9) 0.08495 (12) 0.0543 (11)
N2 0.5580 (3) 0.7798 (8) 0.21461 (10) 0.0475 (10)
H4 0.5427 0.6407 0.1995 0.057*
N3 0.5127 (3) 0.8173 (8) 0.25337 (10) 0.0449 (10)
C1 0.4809 (4) 0.1830 (12) 0.06048 (17) 0.0679 (16)
H1 0.4270 0.0872 0.0716 0.081*
C2 0.5070 (5) 0.1317 (12) 0.01916 (17) 0.0679 (16)
H2 0.4720 0.0042 0.0033 0.082*
C3 0.5852 (4) 0.2727 (12) 0.00229 (15) 0.0635 (15)
H3 0.6037 0.2437 −0.0255 0.076*
C4 0.6372 (4) 0.4592 (10) 0.02669 (14) 0.0481 (12)
C5 0.7184 (4) 0.6099 (12) 0.01122 (15) 0.0610 (15)
H5 0.7386 0.5885 −0.0165 0.073*
C6 0.7676 (4) 0.7867 (11) 0.03669 (15) 0.0597 (14)
H6A 0.8220 0.8836 0.0263 0.072*
C7 0.7376 (4) 0.8255 (11) 0.07854 (14) 0.0530 (13)
H7 0.7724 0.9470 0.0955 0.064*
C8 0.6581 (3) 0.6872 (10) 0.09433 (12) 0.0436 (12)
C9 0.6056 (3) 0.4985 (10) 0.06885 (13) 0.0439 (12)
C10 0.6703 (3) 0.9191 (9) 0.15890 (14) 0.0486 (12)
H10A 0.6671 1.0901 0.1436 0.058*
H10B 0.7402 0.8724 0.1624 0.058*
C11 0.6250 (3) 0.9590 (11) 0.20091 (14) 0.0479 (12)
C12 0.4417 (3) 0.6516 (10) 0.26137 (14) 0.0463 (12)
H12 0.4241 0.5212 0.2415 0.056*
C13 0.3880 (3) 0.6625 (10) 0.30083 (12) 0.0417 (12)
C14 0.3068 (3) 0.4905 (9) 0.30537 (12) 0.0421 (11)
H14 0.2883 0.3768 0.2833 0.050*
C15 0.2527 (3) 0.4860 (9) 0.34250 (12) 0.0389 (11)
C16 0.2808 (3) 0.6550 (10) 0.37560 (12) 0.0374 (11)
C17 0.3629 (3) 0.8264 (9) 0.37111 (12) 0.0405 (11)
C18 0.4170 (3) 0.8321 (9) 0.33362 (12) 0.0409 (12)
H18 0.4717 0.9477 0.3306 0.049*
C19 0.1410 (4) 0.1460 (10) 0.31644 (14) 0.0520 (12)
H19A 0.1206 0.2525 0.2927 0.078*
H19B 0.0861 0.0359 0.3258 0.078*
H19C 0.1957 0.0301 0.3086 0.078*
C20 0.1689 (4) 0.8559 (10) 0.42331 (16) 0.0624 (15)
H20A 0.2052 1.0238 0.4203 0.094*
H20B 0.1462 0.8378 0.4517 0.094*
H20C 0.1125 0.8567 0.4047 0.094*
C21 0.4632 (3) 1.1764 (10) 0.40269 (14) 0.0513 (13)
H21A 0.5264 1.0852 0.4002 0.077*
H21B 0.4633 1.2881 0.4274 0.077*
H21C 0.4524 1.2889 0.3785 0.077*
C22 0.3780 (4) 0.1473 (12) 0.1656 (2) 0.0755 (16)
H22A 0.4269 0.0056 0.1624 0.113*
H22B 0.3280 0.1286 0.1442 0.113*
H22C 0.3472 0.1329 0.1927 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0574 (19) 0.061 (2) 0.0310 (16) −0.0138 (17) 0.0085 (14) −0.0099 (15)
O2 0.104 (3) 0.092 (3) 0.050 (2) −0.048 (2) 0.0258 (19) −0.030 (2)
O3 0.052 (2) 0.058 (2) 0.0388 (17) −0.0123 (18) 0.0051 (14) −0.0016 (16)
O4 0.0519 (19) 0.052 (2) 0.0299 (16) 0.0046 (16) 0.0083 (14) 0.0080 (15)
O5 0.0585 (19) 0.061 (2) 0.0350 (17) −0.0140 (19) 0.0038 (15) −0.0064 (16)
O6 0.088 (3) 0.080 (3) 0.064 (3) −0.023 (2) 0.018 (2) −0.018 (2)
N1 0.056 (2) 0.059 (3) 0.048 (2) −0.009 (2) 0.000 (2) −0.008 (2)
N2 0.058 (2) 0.054 (3) 0.031 (2) −0.001 (2) 0.0097 (17) −0.0052 (18)
N3 0.051 (2) 0.057 (3) 0.0264 (19) 0.003 (2) 0.0121 (18) −0.0002 (18)
C1 0.063 (3) 0.080 (4) 0.060 (3) −0.016 (3) 0.000 (3) −0.019 (3)
C2 0.080 (4) 0.073 (4) 0.052 (3) −0.001 (4) −0.011 (3) −0.022 (3)
C3 0.077 (4) 0.076 (4) 0.037 (3) 0.017 (3) −0.007 (3) −0.010 (3)
C4 0.064 (3) 0.048 (3) 0.033 (3) 0.014 (3) −0.001 (2) −0.005 (2)
C5 0.077 (4) 0.070 (4) 0.036 (3) 0.013 (3) 0.010 (3) −0.007 (3)
C6 0.067 (3) 0.069 (4) 0.043 (3) 0.004 (3) 0.017 (3) 0.002 (3)
C7 0.058 (3) 0.065 (4) 0.036 (3) −0.004 (3) 0.012 (2) −0.008 (2)
C8 0.052 (3) 0.052 (3) 0.027 (2) −0.001 (3) 0.005 (2) −0.003 (2)
C9 0.051 (3) 0.043 (3) 0.038 (3) 0.007 (3) 0.002 (2) 0.000 (2)
C10 0.052 (3) 0.060 (3) 0.034 (2) −0.013 (3) 0.005 (2) −0.010 (2)
C11 0.046 (3) 0.062 (4) 0.035 (3) −0.010 (3) 0.006 (2) −0.009 (3)
C12 0.051 (3) 0.055 (3) 0.033 (2) −0.005 (3) 0.008 (2) −0.003 (2)
C13 0.041 (3) 0.052 (3) 0.032 (2) 0.002 (2) 0.005 (2) 0.001 (2)
C14 0.047 (3) 0.047 (3) 0.033 (2) −0.001 (2) 0.0023 (19) −0.003 (2)
C15 0.037 (3) 0.043 (3) 0.037 (3) 0.001 (2) 0.0049 (19) 0.010 (2)
C16 0.041 (3) 0.042 (3) 0.028 (2) 0.003 (2) 0.0052 (19) 0.002 (2)
C17 0.046 (3) 0.047 (3) 0.029 (2) 0.007 (2) −0.0021 (19) 0.001 (2)
C18 0.043 (3) 0.047 (3) 0.032 (2) 0.001 (2) 0.004 (2) 0.004 (2)
C19 0.057 (3) 0.058 (3) 0.041 (3) −0.015 (3) −0.005 (2) −0.001 (3)
C20 0.070 (3) 0.058 (4) 0.059 (3) 0.002 (3) 0.025 (3) 0.002 (3)
C21 0.050 (3) 0.050 (3) 0.053 (3) −0.007 (3) −0.003 (2) −0.010 (2)
C22 0.069 (4) 0.069 (4) 0.088 (4) −0.001 (3) −0.003 (3) 0.008 (3)

Geometric parameters (Å, °)

O1—C8 1.369 (5) C7—C8 1.358 (6)
O1—C10 1.429 (5) C7—H7 0.9300
O2—C11 1.225 (5) C8—C9 1.418 (6)
O3—C15 1.360 (5) C10—C11 1.483 (6)
O3—C19 1.432 (5) C10—H10A 0.9700
O4—C16 1.367 (5) C10—H10B 0.9700
O4—C20 1.418 (5) C12—C13 1.450 (6)
O5—C17 1.364 (5) C12—H12 0.9300
O5—C21 1.429 (5) C13—C14 1.382 (6)
O6—C22 1.407 (6) C13—C18 1.391 (6)
O6—H6 0.8200 C14—C15 1.389 (5)
N1—C1 1.306 (6) C14—H14 0.9300
N1—C9 1.366 (6) C15—C16 1.394 (6)
N2—C11 1.329 (5) C16—C17 1.390 (6)
N2—N3 1.389 (5) C17—C18 1.398 (6)
N2—H4 0.8600 C18—H18 0.9300
N3—C12 1.275 (5) C19—H19A 0.9600
C1—C2 1.386 (7) C19—H19B 0.9600
C1—H1 0.9300 C19—H19C 0.9600
C2—C3 1.365 (8) C20—H20A 0.9600
C2—H2 0.9300 C20—H20B 0.9600
C3—C4 1.387 (7) C20—H20C 0.9600
C3—H3 0.9300 C21—H21A 0.9600
C4—C5 1.404 (7) C21—H21B 0.9600
C4—C9 1.422 (6) C21—H21C 0.9600
C5—C6 1.358 (7) C22—H22A 0.9600
C5—H5 0.9300 C22—H22B 0.9600
C6—C7 1.407 (6) C22—H22C 0.9600
C6—H6A 0.9300
C8—O1—C10 114.8 (3) N3—C12—C13 121.3 (4)
C15—O3—C19 117.5 (3) N3—C12—H12 119.4
C16—O4—C20 115.1 (3) C13—C12—H12 119.4
C17—O5—C21 118.5 (3) C14—C13—C18 120.3 (4)
C22—O6—H6 109.5 C14—C13—C12 117.3 (4)
C1—N1—C9 118.0 (4) C18—C13—C12 122.4 (4)
C11—N2—N3 120.0 (4) C13—C14—C15 120.6 (4)
C11—N2—H4 120.0 C13—C14—H14 119.7
N3—N2—H4 120.0 C15—C14—H14 119.7
C12—N3—N2 114.8 (4) O3—C15—C14 124.5 (4)
N1—C1—C2 124.6 (5) O3—C15—C16 115.8 (4)
N1—C1—H1 117.7 C14—C15—C16 119.7 (4)
C2—C1—H1 117.7 O4—C16—C17 120.8 (4)
C3—C2—C1 118.4 (5) O4—C16—C15 119.3 (4)
C3—C2—H2 120.8 C17—C16—C15 119.6 (3)
C1—C2—H2 120.8 O5—C17—C16 114.8 (3)
C2—C3—C4 119.8 (5) O5—C17—C18 124.5 (4)
C2—C3—H3 120.1 C16—C17—C18 120.6 (4)
C4—C3—H3 120.1 C13—C18—C17 119.1 (4)
C3—C4—C5 122.5 (5) C13—C18—H18 120.5
C3—C4—C9 118.1 (5) C17—C18—H18 120.5
C5—C4—C9 119.4 (5) O3—C19—H19A 109.5
C6—C5—C4 120.1 (5) O3—C19—H19B 109.5
C6—C5—H5 120.0 H19A—C19—H19B 109.5
C4—C5—H5 120.0 O3—C19—H19C 109.5
C5—C6—C7 121.0 (5) H19A—C19—H19C 109.5
C5—C6—H6A 119.5 H19B—C19—H19C 109.5
C7—C6—H6A 119.5 O4—C20—H20A 109.5
C8—C7—C6 120.6 (5) O4—C20—H20B 109.5
C8—C7—H7 119.7 H20A—C20—H20B 109.5
C6—C7—H7 119.7 O4—C20—H20C 109.5
C7—C8—O1 124.9 (4) H20A—C20—H20C 109.5
C7—C8—C9 120.1 (4) H20B—C20—H20C 109.5
O1—C8—C9 115.0 (4) O5—C21—H21A 109.5
N1—C9—C8 120.1 (4) O5—C21—H21B 109.5
N1—C9—C4 121.1 (4) H21A—C21—H21B 109.5
C8—C9—C4 118.9 (4) O5—C21—H21C 109.5
O1—C10—C11 113.9 (4) H21A—C21—H21C 109.5
O1—C10—H10A 108.8 H21B—C21—H21C 109.5
C11—C10—H10A 108.8 O6—C22—H22A 109.5
O1—C10—H10B 108.8 O6—C22—H22B 109.5
C11—C10—H10B 108.8 H22A—C22—H22B 109.5
H10A—C10—H10B 107.7 O6—C22—H22C 109.5
O2—C11—N2 123.9 (4) H22A—C22—H22C 109.5
O2—C11—C10 117.0 (4) H22B—C22—H22C 109.5
N2—C11—C10 119.1 (4)
C11—N2—N3—C12 172.4 (4) O1—C10—C11—O2 −169.6 (4)
C9—N1—C1—C2 0.2 (8) O1—C10—C11—N2 10.2 (7)
N1—C1—C2—C3 −0.7 (9) N2—N3—C12—C13 179.2 (4)
C1—C2—C3—C4 0.8 (8) N3—C12—C13—C14 174.7 (4)
C2—C3—C4—C5 179.8 (5) N3—C12—C13—C18 −7.0 (7)
C2—C3—C4—C9 −0.6 (7) C18—C13—C14—C15 0.5 (7)
C3—C4—C5—C6 −179.0 (5) C12—C13—C14—C15 178.9 (4)
C9—C4—C5—C6 1.5 (7) C19—O3—C15—C14 0.2 (6)
C4—C5—C6—C7 −1.0 (8) C19—O3—C15—C16 −179.5 (4)
C5—C6—C7—C8 −0.3 (8) C13—C14—C15—O3 179.8 (4)
C6—C7—C8—O1 −179.7 (4) C13—C14—C15—C16 −0.4 (6)
C6—C7—C8—C9 1.0 (7) C20—O4—C16—C17 76.2 (5)
C10—O1—C8—C7 6.0 (6) C20—O4—C16—C15 −109.2 (5)
C10—O1—C8—C9 −174.7 (4) O3—C15—C16—O4 5.0 (6)
C1—N1—C9—C8 −179.4 (5) C14—C15—C16—O4 −174.7 (4)
C1—N1—C9—C4 0.0 (7) O3—C15—C16—C17 179.7 (4)
C7—C8—C9—N1 179.0 (4) C14—C15—C16—C17 0.0 (6)
O1—C8—C9—N1 −0.3 (6) C21—O5—C17—C16 −174.9 (4)
C7—C8—C9—C4 −0.5 (6) C21—O5—C17—C18 6.1 (6)
O1—C8—C9—C4 −179.8 (4) O4—C16—C17—O5 −4.0 (6)
C3—C4—C9—N1 0.2 (6) C15—C16—C17—O5 −178.6 (4)
C5—C4—C9—N1 179.7 (5) O4—C16—C17—C18 175.1 (4)
C3—C4—C9—C8 179.7 (4) C15—C16—C17—C18 0.5 (6)
C5—C4—C9—C8 −0.8 (6) C14—C13—C18—C17 −0.1 (7)
C8—O1—C10—C11 174.8 (4) C12—C13—C18—C17 −178.4 (4)
N3—N2—C11—O2 1.5 (7) O5—C17—C18—C13 178.6 (4)
N3—N2—C11—C10 −178.3 (4) C16—C17—C18—C13 −0.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6···N1 0.82 2.02 2.814 (5) 164
N2—H4···O6 0.86 2.30 3.070 (4) 149
C3—H3···O5i 0.93 2.45 3.340 (6) 159
C5—H5···O4i 0.93 2.52 3.411 (6) 160
C19—H19A···O2ii 0.96 2.37 3.196 (6) 144
C21—H21A···O3iii 0.96 2.57 3.265 (5) 130

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x−1/2, −y+3/2, z; (iii) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2668).

References

  1. Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.
  2. Park, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun.9, 671–674.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Wang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051113/cv2668sup1.cif

e-66-00o23-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051113/cv2668Isup2.hkl

e-66-00o23-Isup2.hkl (92.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES