Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 19;66(Pt 1):m79. doi: 10.1107/S1600536809053768

Aqua­[2-(5-ethyl-2-pyridyl-κN)-4-iso­propyl-4-methyl-5-oxo-4,5-dihydroxy­imidazol-1-ido-κN 1](5-methyl-1H-pyrazole-3-carboxyl­ato-κ2 N 2,O)copper(II) 1.33-hydrate

Ji-Chang Zhuang a, Fei-Long Hu a, Zhong-Jing Huang a,*, Yue Zhuang a, Feng Zhang a
PMCID: PMC2980135  PMID: 21579972

Abstract

In the title complex, [Cu(C5H5N2O2)(C14H18N3O)(H2O)]·1.33H2O, the CuII ion is coordinated in a slightly distorted square-pyramidal environment. The basal plane is formed by two N atoms from a 2-(5-ethyl-2-pyridyl-κN)-4-isopropyl-4-methyl-5-oxo-4,5-dihydroxy­imidazol-1-ide ligand and by one O atom and one N atom from a 5-methyl-1H-pyrazole-3-carboxyl­ate ligand. The apical position is occupied by a water mol­ecule. In the crystal structure, O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds lead to a three-dimensional supra­molecular network.

Related literature

For general background to pyrazole and pyridine derivatives, see: Manna et al. (1992); Montoya et al. (2007); Perevalov et al. (2001).graphic file with name e-66-00m79-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H5N2O2)(C14H18N3O)(H2O)]·1.33H2O

  • M r = 475.01

  • Trigonal, Inline graphic

  • a = 26.7859 (3) Å

  • c = 16.6531 (5) Å

  • V = 10347.6 (4) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.35 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.638, T max = 0.723

  • 19606 measured reflections

  • 5619 independent reflections

  • 3406 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.168

  • S = 1.04

  • 5619 reflections

  • 279 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053768/hy2262sup1.cif

e-66-00m79-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053768/hy2262Isup2.hkl

e-66-00m79-Isup2.hkl (275.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 1.962 (2)
Cu1—N3 1.946 (3)
Cu1—N5 2.008 (2)
Cu1—O4 1.973 (2)
Cu1—O6 2.265 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.85 2.12 2.965 (10) 172
O2—H2A⋯O5 0.85 2.08 2.838 (7) 148
O2—H2B⋯O2i 0.85 2.41 3.246 (10) 168
O6—H6A⋯O3ii 0.85 2.14 2.807 (3) 135
O6—H6B⋯N4iii 0.85 2.07 2.861 (3) 154
N2—H2⋯O5 0.83 2.01 2.733 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Innovation Project of Guangxi University for Nationalities (gxun-chx2009080).

supplementary crystallographic information

Comment

The chemical and pharmacological properties of heterocyclic derivatives, particularly pyrazole and pyridine derivatives have been investigated extensively because of their chelating ability with metal ions and their potentially beneficial chemical and biological activities (Manna et al., 1992; Montoya et al., 2007; Perevalov et al., 2001). During our research of these types of compounds, a new mixed-ligand copper(II) complex has been synthesized and characterized by single-crystal X-ray diffraction.

As illustrated in Fig. 1, the CuII ion is five-coordinated by three N atoms and two O atoms in a distorted square-pyramidal geometry (Table 1). The basal plane is formed by two N atoms from a 2-(5-ethylpyridin-2-yl)-5-isopropyl-5-methyl-imidazol-4-one ligand and by one O atom and one N atom from a 5-methyl-1H-pyrazole-3-carboxylate ligand. The apical position is occupied by the O atom from a water molecule. The complex molecules and uncoordinated water molecules are held together by hydrogen bonds (Table 2), generating a three-dimensional supramolecular network (Fig. 2).

Experimental

All reagents were available commercially and were used without further purification. A mixture of 5-methyl-1H-pyrazole-3-carboxylatic acid (0.126 g, 1.0 mmol), 2-(5-ethyl-pyridin-2-yl)-5-isopropyl-5-methyl-3,5-dihydro-imidazol-4-one (0.245 g, 1.0 mmol), CuCl2.2H2O (0.170 g, 1.0 mmol), EtOH (10 ml) and H2O (10 ml) was sealed in a 25 ml Teflon-lined bomb and heated to 393 K for 3 d, and then cooled to room temperature. Blue crystals were obtained (yield 32% based on Cu).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å and N—H= 0.83 Å, and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecules were located in a difference Fourier map and refined using a riding model, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the c axis.

Crystal data

[Cu(C5H5N2O2)(C14H18N3O)(H2O)]·1.33H2O Dx = 1.372 Mg m3
Mr = 475.01 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 6164 reflections
Hall symbol: -R 3 θ = 2.6–22.1°
a = 26.7859 (3) Å µ = 0.99 mm1
c = 16.6531 (5) Å T = 296 K
V = 10347.6 (4) Å3 Block, blue
Z = 18 0.50 × 0.40 × 0.35 mm
F(000) = 4470

Data collection

Bruker APEXII CCD diffractometer 5619 independent reflections
Radiation source: fine-focus sealed tube 3406 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −33→27
Tmin = 0.638, Tmax = 0.723 k = −27→34
19606 measured reflections l = −21→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0901P)2 + 5.4824P] where P = (Fo2 + 2Fc2)/3
5619 reflections (Δ/σ)max = 0.001
279 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.29 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.150787 (15) 0.398671 (15) 0.29814 (2) 0.05208 (17)
N1 0.22614 (10) 0.46945 (11) 0.29242 (18) 0.0577 (7)
N2 0.26293 (11) 0.51163 (11) 0.34201 (18) 0.0604 (7)
H2 0.2578 0.5141 0.3908 0.072*
N3 0.14042 (10) 0.39308 (10) 0.41407 (17) 0.0538 (7)
N4 0.07626 (11) 0.33959 (11) 0.51314 (18) 0.0597 (7)
N5 0.08268 (10) 0.31844 (10) 0.30232 (16) 0.0489 (6)
O1 0.3333 0.6667 0.5264 (7) 0.246 (5)
H1 0.3091 0.6352 0.5486 0.296* 0.67
O2 0.2584 (3) 0.5558 (3) 0.6093 (5) 0.326 (5)
H2B 0.2449 0.5704 0.6420 0.391*
H2A 0.2311 0.5303 0.5811 0.391*
O3 0.22982 (10) 0.44486 (11) 0.08578 (16) 0.0709 (7)
O4 0.16677 (9) 0.39531 (9) 0.18320 (14) 0.0607 (6)
O5 0.20666 (10) 0.47281 (11) 0.48519 (16) 0.0834 (8)
O6 0.09369 (10) 0.43745 (10) 0.27716 (15) 0.0698 (7)
H6B 0.0659 0.4183 0.2450 0.084*
H6A 0.1170 0.4717 0.2620 0.084*
C1 0.21357 (13) 0.43775 (15) 0.1558 (2) 0.0572 (8)
C2 0.24916 (13) 0.48057 (13) 0.2185 (2) 0.0556 (8)
C3 0.30220 (13) 0.53166 (14) 0.2216 (3) 0.0628 (10)
H3 0.3273 0.5496 0.1789 0.075*
C4 0.31003 (13) 0.54998 (14) 0.2988 (3) 0.0629 (9)
C5 0.35886 (15) 0.60083 (15) 0.3385 (3) 0.0810 (12)
H5A 0.3457 0.6091 0.3877 0.121*
H5B 0.3732 0.6336 0.3034 0.121*
H5C 0.3891 0.5926 0.3499 0.121*
C6 0.05778 (14) 0.28263 (14) 0.2408 (2) 0.0586 (8)
H6 0.0749 0.2944 0.1905 0.070*
C7 0.00924 (15) 0.23014 (15) 0.2462 (2) 0.0664 (9)
C8 −0.0143 (2) 0.1906 (2) 0.1730 (3) 0.1164 (19)
H8A −0.0025 0.2145 0.1252 0.140*
H8B 0.0037 0.1670 0.1710 0.140*
C9 −0.0737 (3) 0.1542 (3) 0.1694 (4) 0.172 (3)
H9A −0.0856 0.1260 0.2114 0.257*
H9B −0.0840 0.1351 0.1182 0.257*
H9C −0.0926 0.1764 0.1761 0.257*
C10 −0.01637 (15) 0.21426 (13) 0.3225 (2) 0.0626 (9)
H10 −0.0504 0.1793 0.3291 0.075*
C11 0.00827 (13) 0.24971 (13) 0.3871 (2) 0.0539 (8)
H11 −0.0081 0.2390 0.4379 0.065*
C12 0.05862 (12) 0.30228 (12) 0.37493 (19) 0.0464 (7)
C13 0.08981 (12) 0.34381 (12) 0.4392 (2) 0.0486 (7)
C14 0.16219 (14) 0.42548 (15) 0.4813 (2) 0.0642 (9)
C15 0.12202 (15) 0.39227 (15) 0.5514 (2) 0.0689 (10)
C16 0.15575 (18) 0.37754 (19) 0.6134 (3) 0.0885 (12)
H16A 0.1319 0.3596 0.6595 0.133*
H16B 0.1898 0.4123 0.6296 0.133*
H16C 0.1665 0.3516 0.5896 0.133*
C17 0.09624 (19) 0.42720 (19) 0.5869 (3) 0.0949 (14)
H17 0.1278 0.4613 0.6127 0.114*
C18 0.0717 (3) 0.4477 (2) 0.5255 (4) 0.132 (2)
H18A 0.0469 0.4163 0.4910 0.198*
H18B 0.1023 0.4775 0.4944 0.198*
H18C 0.0499 0.4629 0.5509 0.198*
C19 0.0519 (2) 0.3941 (2) 0.6506 (3) 0.132 (2)
H19A 0.0405 0.4190 0.6760 0.198*
H19B 0.0682 0.3802 0.6901 0.198*
H19C 0.0189 0.3621 0.6265 0.198*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0392 (2) 0.0468 (2) 0.0638 (3) 0.01661 (16) 0.00573 (17) 0.01295 (18)
N1 0.0401 (13) 0.0552 (16) 0.0731 (19) 0.0204 (12) 0.0081 (13) 0.0200 (14)
N2 0.0430 (14) 0.0435 (14) 0.090 (2) 0.0179 (12) −0.0019 (14) 0.0079 (14)
N3 0.0410 (13) 0.0460 (14) 0.0623 (18) 0.0127 (11) 0.0032 (12) 0.0099 (13)
N4 0.0491 (15) 0.0518 (15) 0.0628 (19) 0.0137 (12) 0.0089 (13) 0.0010 (13)
N5 0.0450 (13) 0.0447 (13) 0.0545 (16) 0.0206 (11) 0.0016 (12) 0.0094 (12)
O1 0.255 (8) 0.255 (8) 0.229 (12) 0.127 (4) 0.000 0.000
O2 0.278 (9) 0.199 (7) 0.314 (9) −0.021 (6) 0.021 (7) −0.127 (7)
O3 0.0568 (14) 0.0923 (18) 0.0720 (17) 0.0436 (13) 0.0174 (12) 0.0276 (14)
O4 0.0458 (12) 0.0623 (14) 0.0677 (15) 0.0223 (11) 0.0077 (11) 0.0128 (11)
O5 0.0602 (15) 0.0625 (15) 0.0893 (19) 0.0020 (12) 0.0027 (14) −0.0104 (14)
O6 0.0606 (13) 0.0581 (13) 0.0934 (18) 0.0317 (11) −0.0160 (13) 0.0076 (12)
C1 0.0462 (17) 0.068 (2) 0.069 (2) 0.0373 (16) 0.0083 (17) 0.0217 (18)
C2 0.0415 (15) 0.0525 (18) 0.078 (2) 0.0272 (14) 0.0076 (16) 0.0224 (17)
C3 0.0404 (16) 0.0566 (19) 0.094 (3) 0.0260 (15) 0.0203 (18) 0.0316 (19)
C4 0.0404 (16) 0.0477 (18) 0.101 (3) 0.0225 (14) 0.0122 (18) 0.0194 (19)
C5 0.052 (2) 0.051 (2) 0.128 (4) 0.0171 (16) 0.007 (2) 0.005 (2)
C6 0.063 (2) 0.0554 (19) 0.054 (2) 0.0271 (16) 0.0028 (16) 0.0069 (16)
C7 0.062 (2) 0.055 (2) 0.067 (2) 0.0179 (17) −0.0054 (18) 0.0076 (17)
C8 0.111 (4) 0.083 (3) 0.085 (3) −0.005 (3) −0.019 (3) −0.009 (3)
C9 0.135 (6) 0.166 (6) 0.135 (6) 0.015 (5) −0.027 (4) −0.027 (5)
C10 0.0569 (19) 0.0419 (17) 0.075 (2) 0.0145 (15) −0.0043 (18) 0.0063 (17)
C11 0.0471 (16) 0.0472 (17) 0.062 (2) 0.0195 (14) −0.0003 (15) 0.0085 (15)
C12 0.0396 (14) 0.0406 (15) 0.059 (2) 0.0200 (12) 0.0013 (14) 0.0106 (14)
C13 0.0389 (15) 0.0422 (15) 0.061 (2) 0.0173 (12) 0.0030 (14) 0.0091 (15)
C14 0.0512 (19) 0.0522 (19) 0.074 (2) 0.0142 (15) 0.0029 (17) −0.0041 (18)
C15 0.056 (2) 0.061 (2) 0.069 (2) 0.0129 (16) 0.0051 (18) −0.0118 (18)
C16 0.082 (3) 0.087 (3) 0.069 (3) 0.022 (2) −0.010 (2) −0.007 (2)
C17 0.071 (3) 0.077 (3) 0.113 (4) 0.020 (2) 0.015 (3) −0.020 (3)
C18 0.137 (5) 0.106 (4) 0.180 (6) 0.080 (4) 0.022 (4) −0.005 (4)
C19 0.081 (3) 0.125 (4) 0.146 (5) 0.018 (3) 0.036 (3) −0.052 (4)

Geometric parameters (Å, °)

Cu1—N1 1.962 (2) C6—C7 1.359 (5)
Cu1—N3 1.946 (3) C6—H6 0.9300
Cu1—N5 2.008 (2) C7—C10 1.405 (5)
Cu1—O4 1.973 (2) C7—C8 1.529 (6)
Cu1—O6 2.265 (2) C8—C9 1.391 (7)
N1—C2 1.341 (4) C8—H8A 0.9700
N1—N2 1.348 (4) C8—H8B 0.9700
N2—C4 1.367 (4) C9—H9A 0.9600
N2—H2 0.8300 C9—H9B 0.9600
N3—C14 1.357 (4) C9—H9C 0.9600
N3—C13 1.402 (3) C10—C11 1.367 (5)
N4—C13 1.272 (4) C10—H10 0.9300
N4—C15 1.473 (4) C11—C12 1.394 (4)
N5—C6 1.332 (4) C11—H11 0.9300
N5—C12 1.336 (4) C12—C13 1.467 (4)
O1—H1 0.8500 C14—C15 1.535 (5)
O2—H2B 0.8501 C15—C17 1.532 (6)
O2—H2A 0.8501 C15—C16 1.547 (6)
O3—C1 1.226 (4) C16—H16A 0.9600
O4—C1 1.283 (4) C16—H16B 0.9600
O5—C14 1.233 (4) C16—H16C 0.9600
O6—H6B 0.8498 C17—C18 1.462 (7)
O6—H6A 0.8499 C17—C19 1.506 (6)
C1—C2 1.490 (5) C17—H17 0.9800
C2—C3 1.396 (4) C18—H18A 0.9600
C3—C4 1.355 (5) C18—H18B 0.9600
C3—H3 0.9300 C18—H18C 0.9600
C4—C5 1.490 (5) C19—H19A 0.9600
C5—H5A 0.9600 C19—H19B 0.9600
C5—H5B 0.9600 C19—H19C 0.9600
C5—H5C 0.9600
N3—Cu1—N1 99.25 (11) C9—C8—H8B 108.1
N3—Cu1—O4 170.05 (10) C7—C8—H8B 108.1
N1—Cu1—O4 81.68 (11) H8A—C8—H8B 107.3
N3—Cu1—N5 82.23 (10) C8—C9—H9A 109.5
N1—Cu1—N5 168.82 (10) C8—C9—H9B 109.5
O4—Cu1—N5 94.97 (10) H9A—C9—H9B 109.5
N3—Cu1—O6 94.89 (10) C8—C9—H9C 109.5
N1—Cu1—O6 98.84 (10) H9A—C9—H9C 109.5
O4—Cu1—O6 94.75 (9) H9B—C9—H9C 109.5
N5—Cu1—O6 92.05 (9) C11—C10—C7 120.6 (3)
C2—N1—N2 108.3 (3) C11—C10—H10 119.7
C2—N1—Cu1 113.3 (2) C7—C10—H10 119.7
N2—N1—Cu1 138.4 (2) C10—C11—C12 118.3 (3)
N1—N2—C4 108.7 (3) C10—C11—H11 120.9
N1—N2—H2 125.8 C12—C11—H11 120.9
C14—N3—C13 105.1 (3) N5—C12—C11 121.7 (3)
C14—N3—Cu1 140.4 (2) N5—C12—C13 114.5 (2)
C13—N3—Cu1 113.7 (2) C11—C12—C13 123.8 (3)
C13—N4—C15 105.7 (3) N4—C13—N3 118.1 (3)
C6—N5—C12 118.4 (3) N4—C13—C12 127.6 (3)
C6—N5—Cu1 127.1 (2) N3—C13—C12 114.3 (3)
C12—N5—Cu1 114.3 (2) O5—C14—N3 125.9 (3)
H2B—O2—H2A 109.3 O5—C14—C15 126.4 (3)
C1—O4—Cu1 116.2 (2) N3—C14—C15 107.7 (3)
Cu1—O6—H6B 114.0 N4—C15—C17 109.8 (3)
Cu1—O6—H6A 104.0 N4—C15—C14 103.4 (3)
H6B—O6—H6A 114.4 C17—C15—C14 109.8 (3)
O3—C1—O4 126.1 (3) N4—C15—C16 110.9 (3)
O3—C1—C2 120.4 (3) C17—C15—C16 113.4 (4)
O4—C1—C2 113.5 (3) C14—C15—C16 109.0 (3)
N1—C2—C3 108.3 (3) C15—C16—H16A 109.5
N1—C2—C1 115.2 (3) C15—C16—H16B 109.5
C3—C2—C1 136.5 (3) H16A—C16—H16B 109.5
C4—C3—C2 106.6 (3) C15—C16—H16C 109.5
C4—C3—H3 126.7 H16A—C16—H16C 109.5
C4—N2—H2 125.5 H16B—C16—H16C 109.5
C2—C3—H3 126.7 C18—C17—C19 110.1 (5)
C3—C4—N2 108.1 (3) C18—C17—C15 112.6 (4)
C3—C4—C5 131.2 (3) C19—C17—C15 112.1 (4)
N2—C4—C5 120.8 (4) C18—C17—H17 107.2
C4—C5—H5A 109.5 C19—C17—H17 107.2
C4—C5—H5B 109.5 C15—C17—H17 107.2
H5A—C5—H5B 109.5 C17—C18—H18A 109.5
C4—C5—H5C 109.5 C17—C18—H18B 109.5
H5A—C5—H5C 109.5 H18A—C18—H18B 109.5
H5B—C5—H5C 109.5 C17—C18—H18C 109.5
N5—C6—C7 124.7 (3) H18A—C18—H18C 109.5
N5—C6—H6 117.6 H18B—C18—H18C 109.5
C7—C6—H6 117.6 C17—C19—H19A 109.5
C6—C7—C10 116.3 (3) C17—C19—H19B 109.5
C6—C7—C8 121.0 (3) H19A—C19—H19B 109.5
C10—C7—C8 122.8 (3) C17—C19—H19C 109.5
C9—C8—C7 116.8 (5) H19A—C19—H19C 109.5
C9—C8—H8A 108.1 H19B—C19—H19C 109.5
C7—C8—H8A 108.1
N3—Cu1—N1—C2 171.2 (2) Cu1—N5—C6—C7 −175.2 (3)
O4—Cu1—N1—C2 1.2 (2) N5—C6—C7—C10 1.6 (5)
N5—Cu1—N1—C2 74.4 (6) N5—C6—C7—C8 −176.6 (4)
O6—Cu1—N1—C2 −92.3 (2) C6—C7—C8—C9 −149.2 (6)
N3—Cu1—N1—N2 −8.8 (3) C10—C7—C8—C9 32.7 (8)
O4—Cu1—N1—N2 −178.8 (3) C6—C7—C10—C11 −2.1 (5)
N5—Cu1—N1—N2 −105.6 (6) C8—C7—C10—C11 176.1 (4)
O6—Cu1—N1—N2 87.7 (3) C7—C10—C11—C12 1.2 (5)
C2—N1—N2—C4 −0.1 (3) C6—N5—C12—C11 −0.8 (4)
Cu1—N1—N2—C4 179.9 (2) Cu1—N5—C12—C11 174.9 (2)
N1—Cu1—N3—C14 15.1 (4) C6—N5—C12—C13 178.6 (3)
N5—Cu1—N3—C14 −176.1 (4) Cu1—N5—C12—C13 −5.8 (3)
O6—Cu1—N3—C14 −84.7 (4) C10—C11—C12—N5 0.3 (4)
N1—Cu1—N3—C13 −177.3 (2) C10—C11—C12—C13 −179.1 (3)
N5—Cu1—N3—C13 −8.5 (2) C15—N4—C13—N3 0.0 (4)
O6—Cu1—N3—C13 82.9 (2) C15—N4—C13—C12 179.4 (3)
N3—Cu1—N5—C6 −176.8 (3) C14—N3—C13—N4 −0.8 (4)
N1—Cu1—N5—C6 −78.3 (6) Cu1—N3—C13—N4 −172.6 (2)
O4—Cu1—N5—C6 −6.4 (3) C14—N3—C13—C12 179.7 (3)
O6—Cu1—N5—C6 88.6 (3) Cu1—N3—C13—C12 7.9 (3)
N3—Cu1—N5—C12 8.0 (2) N5—C12—C13—N4 179.3 (3)
N1—Cu1—N5—C12 106.4 (6) C11—C12—C13—N4 −1.4 (5)
O4—Cu1—N5—C12 178.4 (2) N5—C12—C13—N3 −1.3 (4)
O6—Cu1—N5—C12 −86.6 (2) C11—C12—C13—N3 178.1 (3)
N1—Cu1—O4—C1 −2.7 (2) C13—N3—C14—O5 −179.6 (4)
N5—Cu1—O4—C1 −171.9 (2) Cu1—N3—C14—O5 −11.4 (6)
O6—Cu1—O4—C1 95.6 (2) C13—N3—C14—C15 1.1 (4)
Cu1—O4—C1—O3 −176.6 (2) Cu1—N3—C14—C15 169.3 (3)
Cu1—O4—C1—C2 3.4 (3) C13—N4—C15—C17 117.8 (4)
N2—N1—C2—C3 −0.2 (3) C13—N4—C15—C14 0.7 (4)
Cu1—N1—C2—C3 179.76 (19) C13—N4—C15—C16 −116.0 (3)
N2—N1—C2—C1 −179.9 (2) O5—C14—C15—N4 179.6 (4)
Cu1—N1—C2—C1 0.1 (3) N3—C14—C15—N4 −1.2 (4)
O3—C1—C2—N1 177.7 (3) O5—C14—C15—C17 62.4 (5)
O4—C1—C2—N1 −2.3 (4) N3—C14—C15—C17 −118.3 (4)
O3—C1—C2—C3 −1.8 (5) O5—C14—C15—C16 −62.4 (5)
O4—C1—C2—C3 178.2 (3) N3—C14—C15—C16 116.9 (3)
N1—C2—C3—C4 0.5 (3) N4—C15—C17—C18 −63.5 (5)
C1—C2—C3—C4 −180.0 (3) C14—C15—C17—C18 49.6 (5)
C2—C3—C4—N2 −0.6 (3) C16—C15—C17—C18 171.8 (4)
C2—C3—C4—C5 178.4 (3) N4—C15—C17—C19 61.3 (5)
N1—N2—C4—C3 0.5 (3) C14—C15—C17—C19 174.4 (4)
N1—N2—C4—C5 −178.6 (3) C16—C15—C17—C19 −63.4 (5)
C12—N5—C6—C7 −0.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.85 2.12 2.965 (10) 172
O2—H2A···O5 0.85 2.08 2.838 (7) 148
O2—H2B···O2i 0.85 2.41 3.246 (10) 168
O6—H6A···O3ii 0.85 2.14 2.807 (3) 135
O6—H6B···N4iii 0.85 2.07 2.861 (3) 154
N2—H2···O5 0.83 2.01 2.733 (3) 144

Symmetry codes: (i) y−1/3, −x+y+1/3, −z+4/3; (ii) y−1/3, −x+y+1/3, −z+1/3; (iii) −y+1/3, xy+2/3, z−1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2262).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Manna, F., Chimenti, F., Bolasco, A., Cenicola, M. L., D’Amico, M., Parrillo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem.27, 633–639.
  4. Montoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta, 360, 625–637.
  5. Perevalov, S. G., Burgart, Y. V., Saloutin, V. I. & Chupakhin, O. N. (2001). Russ. Chem. Rev.70, 921–925.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053768/hy2262sup1.cif

e-66-00m79-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053768/hy2262Isup2.hkl

e-66-00m79-Isup2.hkl (275.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES