Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o25. doi: 10.1107/S1600536809051526

7-Chloro­indoline-2,3-dione

Jie Sun a,b, Zai-Sheng Cai b,*
PMCID: PMC2980139  PMID: 21580131

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C8H4ClNO2. In the crystal, they are linked by N—H⋯O hydrogen bonds, generating centrosymmetric, tetra­meric assemblies. A C—H⋯O inter­action also occurs.

Related literature

For general background to oxyphenastatin derivatives and further synthetic details, see: Uddin et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-00o25-scheme1.jpg

Experimental

Crystal data

  • C8H4ClNO2

  • M r = 181.57

  • Triclinic, Inline graphic

  • a = 7.2450 (14) Å

  • b = 8.6080 (17) Å

  • c = 12.470 (3) Å

  • α = 86.95 (3)°

  • β = 78.02 (3)°

  • γ = 84.89 (3)°

  • V = 757.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.876, T max = 0.956

  • 2988 measured reflections

  • 2749 independent reflections

  • 2051 reflections with I > 2σ(I)

  • R int = 0.047

  • 3 standard reflections every 200 reflections

  • intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.160

  • S = 1.01

  • 2749 reflections

  • 217 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051526/hb5233sup1.cif

e-66-00o25-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051526/hb5233Isup2.hkl

e-66-00o25-Isup2.hkl (134.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.12 2.961 (4) 165
N2—H2B⋯O4i 0.86 2.10 2.923 (3) 160
C14—H14A⋯O2ii 0.93 2.46 3.385 (4) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis of Nanjing University for support.

supplementary crystallographic information

Experimental

85 g (0.06 mol) Sodium sulfate and 300 ml water was added into a 1000 ml three mouthed flask, mixed till the sodium sulfate dissolved, then a saturated solution of 18 g (0.11 mol) chloral hydrate was added. While stirring, the mixture of 12.7 g (0.1 mol) p-chloroaniline, 12 ml hydrochloric acid and 100 ml water was dropped to the reaction mixture causing white precipitation. Then 22 g (0.32 mol) hydroxylamine hydrochloride was added and the mixture was heated to 348 K. After 5 h, light yellow precipitation appeared, filtered and washed with water, dried and then added the yellow precipitation into concentrated sulfuric acid (50 ml) in batches at 353 K. Heated to 363 K and stirred for 30 minutes and dumped the mixture into ice water (1000 ml), stirred for 40 minutes, filtered and washed with water to neutral, dried and Yellow blocks of (I) were obtained by slow evaporation of an acetone solution (yield; 90%, m.p. 463 K).

Refinement

H atoms were positioned geometrically, with N—H = 0.86Å and C—H = 0.93Å and refined as riding with Uiso(H) = xUeq(C,O,N), where x = 1.5 for NH H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C8H4ClNO2 Z = 4
Mr = 181.57 F(000) = 368
Triclinic, P1 Dx = 1.593 Mg m3
Hall symbol: -P 1 Melting point: 463K K
a = 7.2450 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.6080 (17) Å Cell parameters from 25 reflections
c = 12.470 (3) Å θ = 9–13°
α = 86.95 (3)° µ = 0.45 mm1
β = 78.02 (3)° T = 293 K
γ = 84.89 (3)° Block, yellow
V = 757.2 (3) Å3 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 2051 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.047
graphite θmax = 25.3°, θmin = 1.7°
ω/2θ scans h = 0→8
Absorption correction: ψ scan (North et al., 1968) k = −10→10
Tmin = 0.876, Tmax = 0.956 l = −14→14
2988 measured reflections 3 standard reflections every 200 reflections
2749 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3
2749 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.63 e Å3
13 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.28644 (18) 0.90528 (12) 0.43418 (10) 0.0839 (4)
N1 0.4403 (4) 0.6203 (3) 0.28727 (19) 0.0415 (6)
H1A 0.4599 0.7099 0.2550 0.050*
O1 0.4519 (4) 0.2163 (3) 0.3096 (2) 0.0731 (8)
O2 0.5909 (4) 0.4581 (3) 0.1488 (2) 0.0662 (7)
C1 0.1629 (6) 0.4991 (7) 0.6003 (3) 0.0780 (13)
H1B 0.1019 0.4674 0.6702 0.094*
C2 0.1735 (5) 0.6597 (6) 0.5739 (3) 0.0701 (11)
H2A 0.1201 0.7328 0.6261 0.084*
C3 0.2638 (5) 0.7090 (4) 0.4697 (3) 0.0541 (9)
C4 0.3423 (4) 0.5985 (4) 0.3954 (2) 0.0393 (7)
C5 0.3300 (4) 0.4400 (4) 0.4231 (3) 0.0462 (8)
C6 0.2399 (5) 0.3892 (5) 0.5258 (3) 0.0636 (11)
H6A 0.2321 0.2834 0.5435 0.076*
C7 0.4285 (5) 0.3544 (4) 0.3265 (3) 0.0472 (8)
C8 0.5004 (4) 0.4814 (4) 0.2399 (3) 0.0441 (7)
Cl2 0.12910 (13) 0.66786 (10) 0.12400 (7) 0.0589 (3)
N2 0.3136 (3) 0.9103 (3) −0.04844 (19) 0.0353 (5)
H2B 0.3737 0.8832 0.0031 0.042*
O3 0.2217 (4) 1.0991 (3) −0.2813 (2) 0.0618 (7)
O4 0.4995 (3) 1.1009 (3) −0.13853 (18) 0.0533 (6)
C9 −0.1833 (5) 0.7602 (4) −0.1086 (3) 0.0486 (8)
H9A −0.2948 0.7290 −0.1235 0.058*
C10 −0.0841 (4) 0.8681 (4) −0.1775 (3) 0.0472 (8)
H10A −0.1282 0.9111 −0.2384 0.057*
C11 0.0833 (4) 0.9115 (3) −0.1544 (2) 0.0403 (7)
C12 0.1483 (4) 0.8492 (3) −0.0617 (2) 0.0352 (6)
C13 0.0469 (4) 0.7416 (3) 0.0075 (2) 0.0414 (7)
C14 −0.1181 (4) 0.6972 (4) −0.0167 (3) 0.0446 (7)
H14A −0.1866 0.6243 0.0290 0.053*
C15 0.3646 (4) 1.0178 (4) −0.1286 (2) 0.0438 (7)
C16 0.2210 (4) 1.0242 (4) −0.2053 (3) 0.0473 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1048 (9) 0.0609 (6) 0.0837 (8) 0.0087 (6) −0.0158 (6) −0.0213 (5)
N1 0.0483 (14) 0.0400 (13) 0.0346 (13) −0.0113 (11) −0.0040 (11) 0.0076 (10)
O1 0.102 (2) 0.0405 (14) 0.083 (2) −0.0138 (13) −0.0326 (17) 0.0086 (13)
O2 0.0718 (17) 0.0661 (16) 0.0523 (15) −0.0055 (13) 0.0086 (13) −0.0098 (12)
C1 0.049 (2) 0.144 (4) 0.040 (2) −0.025 (2) −0.0059 (17) 0.025 (2)
C2 0.050 (2) 0.116 (3) 0.0408 (19) 0.003 (2) −0.0039 (16) −0.010 (2)
C3 0.0449 (18) 0.073 (2) 0.0444 (18) −0.0010 (16) −0.0110 (15) −0.0040 (16)
C4 0.0342 (15) 0.0512 (17) 0.0333 (15) −0.0076 (12) −0.0091 (12) 0.0059 (13)
C5 0.0420 (16) 0.0554 (19) 0.0443 (17) −0.0175 (14) −0.0149 (14) 0.0180 (14)
C6 0.054 (2) 0.092 (3) 0.049 (2) −0.029 (2) −0.0186 (18) 0.033 (2)
C7 0.0547 (19) 0.0435 (18) 0.0501 (19) −0.0152 (14) −0.0237 (16) 0.0084 (14)
C8 0.0424 (17) 0.0451 (17) 0.0440 (18) −0.0062 (13) −0.0062 (14) 0.0011 (13)
Cl2 0.0661 (6) 0.0547 (5) 0.0548 (5) −0.0123 (4) −0.0093 (4) 0.0095 (4)
N2 0.0392 (13) 0.0354 (12) 0.0323 (12) −0.0086 (10) −0.0088 (10) 0.0054 (10)
O3 0.0607 (15) 0.0807 (18) 0.0447 (14) 0.0069 (13) −0.0190 (12) 0.0044 (13)
O4 0.0564 (14) 0.0499 (13) 0.0496 (13) −0.0119 (11) −0.0020 (11) 0.0135 (10)
C9 0.0388 (16) 0.0509 (18) 0.057 (2) −0.0076 (14) −0.0067 (15) −0.0162 (16)
C10 0.0406 (17) 0.0563 (19) 0.0460 (18) 0.0031 (15) −0.0118 (14) −0.0118 (15)
C11 0.0371 (15) 0.0433 (16) 0.0394 (16) −0.0018 (12) −0.0046 (13) −0.0074 (13)
C12 0.0326 (14) 0.0329 (14) 0.0371 (15) −0.0030 (11) 0.0010 (12) −0.0052 (11)
C13 0.0405 (16) 0.0378 (15) 0.0429 (17) −0.0050 (12) 0.0005 (13) −0.0080 (13)
C14 0.0376 (16) 0.0398 (16) 0.0521 (18) −0.0101 (12) 0.0046 (14) −0.0058 (13)
C15 0.0442 (17) 0.0437 (16) 0.0406 (16) −0.0105 (14) −0.0012 (14) 0.0070 (13)
C16 0.0441 (18) 0.0392 (16) 0.055 (2) −0.0014 (13) −0.0017 (15) −0.0040 (15)

Geometric parameters (Å, °)

Cl1—C3 1.737 (4) Cl2—C13 1.749 (3)
N1—C8 1.358 (4) N2—C15 1.342 (4)
N1—C4 1.399 (4) N2—C12 1.393 (4)
N1—H1A 0.8600 N2—H2B 0.8600
O1—C7 1.210 (4) O3—C16 1.116 (4)
O2—C8 1.205 (4) O4—C15 1.244 (4)
C1—C6 1.362 (6) C9—C10 1.377 (5)
C1—C2 1.410 (7) C9—C14 1.394 (5)
C1—H1B 0.9300 C9—H9A 0.9300
C2—C3 1.391 (5) C10—C11 1.389 (4)
C2—H2A 0.9300 C10—H10A 0.9300
C3—C4 1.366 (5) C11—C12 1.401 (4)
C4—C5 1.396 (4) C11—C16 1.478 (4)
C5—C6 1.379 (5) C12—C13 1.384 (4)
C5—C7 1.465 (5) C13—C14 1.382 (4)
C6—H6A 0.9300 C14—H14A 0.9300
C7—C8 1.541 (4) C15—C16 1.548 (5)
C8—N1—C4 111.1 (2) C15—N2—C12 109.5 (2)
C8—N1—H1A 124.5 C15—N2—H2B 125.2
C4—N1—H1A 124.5 C12—N2—H2B 125.2
C6—C1—C2 121.4 (3) C10—C9—C14 120.5 (3)
C6—C1—H1B 119.3 C10—C9—H9A 119.7
C2—C1—H1B 119.3 C14—C9—H9A 119.7
C3—C2—C1 120.0 (4) C9—C10—C11 118.7 (3)
C3—C2—H2A 120.0 C9—C10—H10A 120.6
C1—C2—H2A 120.0 C11—C10—H10A 120.6
C4—C3—C2 118.4 (4) C10—C11—C12 120.8 (3)
C4—C3—Cl1 119.7 (3) C10—C11—C16 134.1 (3)
C2—C3—Cl1 121.8 (3) C12—C11—C16 105.0 (3)
C3—C4—C5 120.7 (3) C13—C12—N2 126.7 (3)
C3—C4—N1 128.4 (3) C13—C12—C11 120.1 (3)
C5—C4—N1 110.9 (3) N2—C12—C11 113.2 (2)
C6—C5—C4 121.6 (4) C14—C13—C12 118.9 (3)
C6—C5—C7 131.6 (3) C14—C13—Cl2 121.9 (2)
C4—C5—C7 106.8 (3) C12—C13—Cl2 119.2 (2)
C1—C6—C5 117.9 (4) C13—C14—C9 121.0 (3)
C1—C6—H6A 121.1 C13—C14—H14A 119.5
C5—C6—H6A 121.1 C9—C14—H14A 119.5
O1—C7—C5 131.5 (3) O4—C15—N2 126.6 (3)
O1—C7—C8 123.4 (3) O4—C15—C16 125.7 (3)
C5—C7—C8 105.0 (3) N2—C15—C16 107.7 (3)
O2—C8—N1 128.3 (3) O3—C16—C11 128.3 (3)
O2—C8—C7 125.5 (3) O3—C16—C15 127.2 (3)
N1—C8—C7 106.2 (3) C11—C16—C15 104.5 (3)
C6—C1—C2—C3 0.1 (6) C14—C9—C10—C11 0.8 (5)
C1—C2—C3—C4 −0.7 (5) C9—C10—C11—C12 −1.3 (4)
C1—C2—C3—Cl1 −178.2 (3) C9—C10—C11—C16 −177.5 (3)
C2—C3—C4—C5 0.8 (5) C15—N2—C12—C13 −176.5 (3)
Cl1—C3—C4—C5 178.4 (2) C15—N2—C12—C11 1.6 (3)
C2—C3—C4—N1 −179.5 (3) C10—C11—C12—C13 0.8 (4)
Cl1—C3—C4—N1 −1.9 (5) C16—C11—C12—C13 178.0 (2)
C8—N1—C4—C3 178.8 (3) C10—C11—C12—N2 −177.4 (2)
C8—N1—C4—C5 −1.5 (4) C16—C11—C12—N2 −0.2 (3)
C3—C4—C5—C6 −0.4 (5) N2—C12—C13—C14 178.0 (3)
N1—C4—C5—C6 179.8 (3) C11—C12—C13—C14 0.1 (4)
C3—C4—C5—C7 −179.6 (3) N2—C12—C13—Cl2 −1.0 (4)
N1—C4—C5—C7 0.6 (3) C11—C12—C13—Cl2 −179.0 (2)
C2—C1—C6—C5 0.3 (6) C12—C13—C14—C9 −0.6 (4)
C4—C5—C6—C1 −0.1 (5) Cl2—C13—C14—C9 178.5 (2)
C7—C5—C6—C1 178.8 (3) C10—C9—C14—C13 0.1 (5)
C6—C5—C7—O1 2.9 (6) C12—N2—C15—O4 176.1 (3)
C4—C5—C7—O1 −178.1 (4) C12—N2—C15—C16 −2.2 (3)
C6—C5—C7—C8 −178.7 (3) C10—C11—C16—O3 −3.6 (6)
C4—C5—C7—C8 0.3 (3) C12—C11—C16—O3 179.8 (3)
C4—N1—C8—O2 −178.7 (3) C10—C11—C16—C15 175.6 (3)
C4—N1—C8—C7 1.6 (3) C12—C11—C16—C15 −1.0 (3)
O1—C7—C8—O2 −2.3 (5) O4—C15—C16—O3 2.9 (6)
C5—C7—C8—O2 179.1 (3) N2—C15—C16—O3 −178.8 (3)
O1—C7—C8—N1 177.4 (3) O4—C15—C16—C11 −176.3 (3)
C5—C7—C8—N1 −1.2 (3) N2—C15—C16—C11 2.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.86 2.12 2.961 (4) 165
N2—H2B···O4i 0.86 2.10 2.923 (3) 160
C14—H14A···O2ii 0.93 2.46 3.385 (4) 172

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5233).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Uddin, M. K., Reignier, S. G., Coulter, T., Montalbetti, C., Granas, C., Butcher, S., Krog-Jensen, C. & Felding, J. (2007). Bioorg Med. Chem. Lett.17, 2854–2857. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051526/hb5233sup1.cif

e-66-00o25-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051526/hb5233Isup2.hkl

e-66-00o25-Isup2.hkl (134.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES