Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):m61–m62. doi: 10.1107/S1600536809052714

Tetra-μ-benzoato-bis­{[4-(pyrrolidin-1-yl)pyridine]zinc(II)}

Seung Man Yu a, Kyosang Koo b, Pan-Gi Kim c, Cheal Kim a,*, Youngmee Kim d,*
PMCID: PMC2980161  PMID: 21579957

Abstract

The central part of the title centrosymmetric dinuclear complex, [Zn2(C7H5O2)4(C9H12N2)2], has a paddle-wheel conformation with four benzoate ligands bridging two symmetry-related ZnII ions. The distorted square-pyramidal coordination environment around the ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The Zn⋯Zn separation of 2.9826 (12) Å does not represent a formal direct metal–metal bond. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal O atoms. Two of the C atoms of the pyrrolidine ring are disordered over two sites with refined occupancies of 0.53 (2) and 0.47 (2).

Related literature

For crystal structures containing the [Zn2(O2CPh)4] unit, see: Necefoglu et al. (2002); Zeleňák et al. (2004); Karmakar et al. (2006); Ohmura et al. (2005). For the crystal structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methyl­quinoline, 3-methyl­quinoline, di-2-pyridyl ketone and trans-1-(2-pyrid­yl)-2-(4-pyrid­yl)ethyl­ene, see: Lee et al. (2008); Yu et al. (2008, 2009); Park et al. (2008); Shin et al. (2009); Song et al. (2009). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004).graphic file with name e-66-00m61-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C7H5O2)4(C9H12N2)2]

  • M r = 911.59

  • Monoclinic, Inline graphic

  • a = 11.0021 (11) Å

  • b = 11.4303 (11) Å

  • c = 16.9508 (16) Å

  • β = 93.869 (2)°

  • V = 2126.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.08 × 0.08 × 0.01 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.909, T max = 0.988

  • 11271 measured reflections

  • 4159 independent reflections

  • 2284 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.179

  • S = 0.90

  • 4159 reflections

  • 270 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052714/lh2962sup1.cif

e-66-00m61-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052714/lh2962Isup2.hkl

e-66-00m61-Isup2.hkl (203.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from Korea Ministry Environment ‘ET-Human resource development Project’ and the Korean Science & Engineering Foundation (2009–0074066) is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, great attention has been paid to transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). Some biologically active molecules that have potential interactions with transition metal ions are amino acids, proteins, sugars, nucleotides, fulvic acids and humic acids. In particular, the study on the interaction of transition metal ions with fulvic acids and humic acids, mainly found in soil, is being extensively investigated. As models to examine these interactions we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridylketone, andtrans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Yu, et al., 2009; Song, et al., 2009). The related paddle-wheel type structures for Zn complexes have been previouly reported (Necefoglu, et al., 2002; Zeleňák, et al.,2004; Kamakar, et al., 2006; Ohmura, et al., 2005). In this work, we have employed zinc(II) benzoate as a building block and 4-(pyrrolidin-1-yl)pyridine as a ligand. We report herein the structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains half of the complex with the formula unit being generated by an inversion center. The central part of the complex had a paddle-wheel type conformation four benzoate ligands bridging two symmetry related ZnII ions. The distorted square-pyramidal coordination environment around the unique ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal oxygen atoms.

Experimental

30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml me thanol solution of 4-(pyrrolidin-1-yl)pyridine (30.3 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridine) and 0.97 Å (pyrrolidine). They were included in the refinement in a riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The atoms C37/C37A and C38/C38A are disorder components both with refined occupancies of 0.53 (2) and 0.47 (2).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. The disordered part of pyrrol group is shown by green bonds [Symmetry code: (i) -x, -y + 1, -z].

Crystal data

[Zn2(C7H5O2)4(C9H12N2)2] F(000) = 944
Mr = 911.59 Dx = 1.423 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1481 reflections
a = 11.0021 (11) Å θ = 2.3–19.2°
b = 11.4303 (11) Å µ = 1.19 mm1
c = 16.9508 (16) Å T = 293 K
β = 93.869 (2)° Plate, colorless
V = 2126.8 (4) Å3 0.08 × 0.08 × 0.01 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 4159 independent reflections
Radiation source: fine-focus sealed tube 2284 reflections with I > 2σ(I)
graphite Rint = 0.068
φ and ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −13→13
Tmin = 0.909, Tmax = 0.988 k = −13→14
11271 measured reflections l = −17→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1079P)2] where P = (Fo2 + 2Fc2)/3
4159 reflections (Δ/σ)max < 0.001
270 parameters Δρmax = 0.94 e Å3
7 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.11885 (5) 0.44449 (5) 0.02560 (4) 0.0380 (2)
O11 0.1576 (4) 0.5331 (3) −0.0760 (2) 0.0524 (11)
O12 0.0192 (4) 0.3879 (4) 0.1160 (2) 0.0574 (11)
O21 0.1591 (3) 0.5941 (3) 0.0872 (2) 0.0528 (10)
O22 0.0201 (4) 0.3274 (3) −0.0446 (2) 0.0562 (11)
N31 0.2720 (4) 0.3488 (4) 0.0436 (2) 0.0389 (10)
N32 0.5772 (4) 0.1339 (4) 0.0637 (3) 0.0494 (12)
C11 0.0949 (5) 0.5977 (5) −0.1189 (3) 0.0409 (13)
C12 0.1545 (5) 0.6638 (4) −0.1822 (3) 0.0428 (14)
C13 0.2792 (6) 0.6570 (5) −0.1882 (3) 0.0556 (16)
H13 0.3250 0.6061 −0.1554 0.067*
C14 0.3364 (7) 0.7242 (6) −0.2419 (4) 0.072 (2)
H14 0.4207 0.7224 −0.2436 0.086*
C15 0.2653 (9) 0.7955 (7) −0.2942 (5) 0.089 (3)
H15 0.3025 0.8385 −0.3325 0.107*
C16 0.1429 (8) 0.8024 (6) −0.2898 (4) 0.074 (2)
H16 0.0974 0.8523 −0.3236 0.089*
C17 0.0854 (6) 0.7365 (5) −0.2356 (3) 0.0542 (15)
H17 0.0011 0.7397 −0.2342 0.065*
C21 0.0822 (6) 0.6758 (5) 0.0839 (3) 0.0444 (14)
C22 0.1148 (5) 0.7854 (4) 0.1296 (3) 0.0384 (13)
C23 0.0408 (6) 0.8808 (5) 0.1229 (4) 0.0638 (18)
H23 −0.0297 0.8774 0.0894 0.077*
C24 0.0676 (7) 0.9824 (6) 0.1645 (5) 0.084 (3)
H24 0.0174 1.0476 0.1580 0.101*
C25 0.1670 (8) 0.9853 (6) 0.2142 (5) 0.082 (2)
H25 0.1835 1.0527 0.2438 0.098*
C26 0.2463 (7) 0.8915 (6) 0.2234 (4) 0.0710 (19)
H26 0.3159 0.8950 0.2576 0.085*
C27 0.2173 (6) 0.7926 (5) 0.1794 (4) 0.0579 (17)
H27 0.2695 0.7286 0.1838 0.069*
C31 0.3724 (5) 0.3727 (5) 0.0069 (3) 0.0455 (14)
H31 0.3719 0.4391 −0.0249 0.055*
C32 0.4768 (5) 0.3064 (5) 0.0126 (4) 0.0531 (16)
H32 0.5441 0.3287 −0.0142 0.064*
C33 0.4810 (5) 0.2046 (5) 0.0591 (3) 0.0422 (13)
C34 0.3747 (5) 0.1802 (5) 0.0984 (4) 0.0517 (16)
H34 0.3719 0.1152 0.1312 0.062*
C35 0.2759 (5) 0.2528 (5) 0.0879 (3) 0.0478 (15)
H35 0.2066 0.2335 0.1136 0.057*
C36 0.6859 (5) 0.1549 (5) 0.0198 (4) 0.0573 (17)
H36A 0.7297 0.2235 0.0398 0.069* 0.47 (2)
H36B 0.6639 0.1656 −0.0361 0.069* 0.47 (2)
C37 0.7631 (14) 0.0439 (11) 0.0341 (9) 0.054 (4)* 0.47 (2)
H37A 0.7416 −0.0159 −0.0050 0.065* 0.47 (2)
H37B 0.8495 0.0607 0.0340 0.065* 0.47 (2)
C38 0.7273 (7) 0.008 (2) 0.1161 (9) 0.067 (6)* 0.47 (2)
H38A 0.7685 0.0566 0.1567 0.080* 0.47 (2)
H38B 0.7467 −0.0731 0.1268 0.080* 0.47 (2)
C39 0.5882 (5) 0.0289 (5) 0.1122 (4) 0.0607 (18)
H39A 0.5441 −0.0362 0.0872 0.073* 0.47 (2)
H39B 0.5595 0.0420 0.1643 0.073* 0.47 (2)
H36C 0.7113 0.2360 0.0238 0.069* 0.53 (2)
H36D 0.6710 0.1345 −0.0355 0.069* 0.53 (2)
C37A 0.7824 (9) 0.0733 (12) 0.0611 (11) 0.073 (5)* 0.53 (2)
H37C 0.8362 0.0425 0.0231 0.088* 0.53 (2)
H37D 0.8310 0.1156 0.1016 0.088* 0.53 (2)
C38A 0.7126 (9) −0.0257 (12) 0.0979 (11) 0.063 (5)* 0.53 (2)
H38C 0.7539 −0.0514 0.1473 0.076* 0.53 (2)
H38D 0.7034 −0.0919 0.0622 0.076* 0.53 (2)
H39C 0.5231 −0.0254 0.0971 0.073* 0.53 (2)
H39D 0.5839 0.0486 0.1676 0.073* 0.53 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0382 (4) 0.0339 (3) 0.0421 (4) 0.0065 (3) 0.0043 (3) 0.0011 (3)
O11 0.061 (3) 0.051 (2) 0.047 (2) 0.011 (2) 0.011 (2) 0.017 (2)
O12 0.055 (3) 0.064 (3) 0.056 (3) 0.007 (2) 0.016 (2) 0.016 (2)
O21 0.052 (3) 0.040 (2) 0.064 (3) 0.007 (2) −0.011 (2) −0.010 (2)
O22 0.054 (3) 0.050 (2) 0.063 (3) −0.002 (2) −0.010 (2) −0.014 (2)
N31 0.038 (3) 0.038 (2) 0.041 (3) 0.005 (2) 0.002 (2) 0.005 (2)
N32 0.043 (3) 0.052 (3) 0.053 (3) 0.016 (2) 0.006 (2) 0.010 (2)
C11 0.055 (4) 0.034 (3) 0.035 (3) −0.005 (3) 0.012 (3) −0.003 (2)
C12 0.053 (4) 0.037 (3) 0.039 (3) −0.004 (3) 0.012 (3) −0.004 (3)
C13 0.063 (4) 0.061 (4) 0.044 (3) −0.008 (3) 0.013 (3) −0.005 (3)
C14 0.073 (5) 0.076 (5) 0.068 (5) −0.023 (4) 0.027 (4) −0.015 (4)
C15 0.135 (8) 0.071 (5) 0.066 (5) −0.035 (5) 0.046 (6) 0.000 (4)
C16 0.109 (7) 0.066 (5) 0.046 (4) −0.005 (4) 0.004 (4) 0.018 (3)
C17 0.063 (4) 0.051 (4) 0.048 (4) −0.004 (3) −0.001 (3) 0.008 (3)
C21 0.062 (4) 0.035 (3) 0.037 (3) −0.002 (3) 0.017 (3) 0.004 (2)
C22 0.037 (3) 0.041 (3) 0.037 (3) −0.007 (2) 0.005 (3) −0.005 (2)
C23 0.047 (4) 0.049 (4) 0.096 (5) 0.006 (3) 0.003 (4) −0.018 (4)
C24 0.062 (5) 0.060 (5) 0.128 (7) 0.012 (4) −0.026 (5) −0.038 (5)
C25 0.103 (7) 0.052 (4) 0.093 (6) −0.013 (4) 0.022 (5) −0.028 (4)
C26 0.083 (5) 0.068 (5) 0.059 (4) −0.015 (4) −0.016 (4) −0.013 (4)
C27 0.080 (5) 0.038 (3) 0.054 (4) 0.000 (3) 0.000 (4) 0.002 (3)
C31 0.040 (3) 0.046 (3) 0.050 (3) 0.003 (3) 0.001 (3) 0.015 (3)
C32 0.048 (4) 0.055 (4) 0.058 (4) 0.004 (3) 0.016 (3) 0.012 (3)
C33 0.042 (3) 0.041 (3) 0.044 (3) 0.009 (3) 0.001 (3) −0.001 (3)
C34 0.053 (4) 0.043 (3) 0.061 (4) 0.011 (3) 0.012 (3) 0.017 (3)
C35 0.043 (3) 0.043 (3) 0.059 (4) 0.005 (3) 0.016 (3) 0.011 (3)
C36 0.047 (4) 0.064 (4) 0.062 (4) 0.015 (3) 0.013 (3) 0.006 (3)
C39 0.061 (4) 0.050 (4) 0.072 (4) 0.017 (3) 0.006 (4) 0.009 (3)
C36A 0.047 (4) 0.064 (4) 0.062 (4) 0.015 (3) 0.013 (3) 0.006 (3)
C39A 0.061 (4) 0.050 (4) 0.072 (4) 0.017 (3) 0.006 (4) 0.009 (3)

Geometric parameters (Å, °)

Zn1—N31 2.014 (4) C23—H23 0.9300
Zn1—O21 2.036 (4) C24—C25 1.335 (11)
Zn1—O12 2.048 (4) C24—H24 0.9300
Zn1—O22 2.053 (4) C25—C26 1.384 (11)
Zn1—O11 2.068 (4) C25—H25 0.9300
Zn1—Zn1i 2.9826 (12) C26—C27 1.380 (8)
O11—C11 1.216 (6) C26—H26 0.9300
O12—C11i 1.270 (6) C27—H27 0.9300
O21—C21 1.260 (6) C31—C32 1.374 (7)
O22—C21i 1.268 (7) C31—H31 0.9300
N31—C35 1.329 (6) C32—C33 1.404 (7)
N31—C31 1.333 (6) C32—H32 0.9300
N32—C33 1.330 (6) C33—C34 1.412 (7)
N32—C39 1.454 (7) C34—C35 1.370 (7)
N32—C36 1.470 (7) C34—H34 0.9300
C11—O12i 1.270 (6) C35—H35 0.9300
C11—C12 1.500 (7) C36—C37 1.536 (7)
C12—C13 1.384 (8) C36—H36A 0.9700
C12—C17 1.413 (8) C36—H36B 0.9700
C13—C14 1.375 (8) C37—C38 1.525 (10)
C13—H13 0.9300 C37—H37A 0.9700
C14—C15 1.403 (11) C37—H37B 0.9700
C14—H14 0.9300 C38—C39 1.545 (7)
C15—C16 1.356 (10) C38—H38A 0.9700
C15—H15 0.9300 C38—H38B 0.9700
C16—C17 1.374 (8) C39—H39A 0.9700
C16—H16 0.9300 C39—H39B 0.9700
C17—H17 0.9300 C37A—C38A 1.524 (10)
C21—O22i 1.268 (7) C37A—H37C 0.9700
C21—C22 1.504 (7) C37A—H37D 0.9700
C22—C23 1.361 (8) C38A—H38C 0.9700
C22—C27 1.364 (8) C38A—H38D 0.9700
C23—C24 1.380 (9)
N31—Zn1—O21 103.14 (17) C25—C24—H24 120.6
N31—Zn1—O12 101.53 (16) C23—C24—H24 120.6
O21—Zn1—O12 89.46 (17) C24—C25—C26 122.3 (7)
N31—Zn1—O22 97.95 (17) C24—C25—H25 118.9
O21—Zn1—O22 158.90 (16) C26—C25—H25 118.9
O12—Zn1—O22 86.50 (17) C27—C26—C25 117.0 (7)
N31—Zn1—O11 100.06 (16) C27—C26—H26 121.5
O21—Zn1—O11 88.04 (16) C25—C26—H26 121.5
O12—Zn1—O11 158.27 (16) C22—C27—C26 122.3 (6)
O22—Zn1—O11 88.11 (16) C22—C27—H27 118.8
N31—Zn1—Zn1i 169.40 (13) C26—C27—H27 118.8
O21—Zn1—Zn1i 87.02 (11) N31—C31—C32 124.7 (5)
O12—Zn1—Zn1i 81.31 (12) N31—C31—H31 117.7
O22—Zn1—Zn1i 71.90 (12) C32—C31—H31 117.7
O11—Zn1—Zn1i 77.01 (12) C31—C32—C33 119.5 (5)
C11—O11—Zn1 130.8 (4) C31—C32—H32 120.2
C11i—O12—Zn1 124.6 (4) C33—C32—H32 120.2
C21—O21—Zn1 118.5 (4) N32—C33—C32 122.2 (5)
C21i—O22—Zn1 137.7 (4) N32—C33—C34 122.2 (5)
C35—N31—C31 115.9 (4) C32—C33—C34 115.6 (5)
C35—N31—Zn1 122.0 (3) C35—C34—C33 119.6 (5)
C31—N31—Zn1 122.0 (4) C35—C34—H34 120.2
C33—N32—C39 124.8 (4) C33—C34—H34 120.2
C33—N32—C36 122.8 (5) N31—C35—C34 124.7 (5)
C39—N32—C36 112.4 (4) N31—C35—H35 117.6
O11—C11—O12i 125.3 (5) C34—C35—H35 117.6
O11—C11—C12 118.4 (5) N32—C36—C37 104.2 (6)
O12i—C11—C12 116.3 (5) N32—C36—H36A 110.9
C13—C12—C17 118.6 (5) C37—C36—H36A 110.9
C13—C12—C11 120.5 (6) N32—C36—H36B 110.9
C17—C12—C11 120.8 (5) C37—C36—H36B 110.9
C14—C13—C12 121.2 (7) H36A—C36—H36B 108.9
C14—C13—H13 119.4 C38—C37—C36 100.9 (9)
C12—C13—H13 119.4 C38—C37—H37A 111.6
C13—C14—C15 118.8 (7) C36—C37—H37A 111.6
C13—C14—H14 120.6 C38—C37—H37B 111.6
C15—C14—H14 120.6 C36—C37—H37B 111.6
C16—C15—C14 120.8 (6) H37A—C37—H37B 109.4
C16—C15—H15 119.6 C37—C38—C39 103.7 (8)
C14—C15—H15 119.6 C37—C38—H38A 111.0
C15—C16—C17 120.6 (7) C39—C38—H38A 111.0
C15—C16—H16 119.7 C37—C38—H38B 111.0
C17—C16—H16 119.7 C39—C38—H38B 111.0
C16—C17—C12 119.9 (6) H38A—C38—H38B 109.0
C16—C17—H17 120.0 N32—C39—C38 101.2 (8)
C12—C17—H17 120.0 N32—C39—H39A 111.5
O21—C21—O22i 124.9 (5) C38—C39—H39A 111.5
O21—C21—C22 117.3 (6) N32—C39—H39B 111.5
O22i—C21—C22 117.9 (5) C38—C39—H39B 111.5
C23—C22—C27 118.0 (5) H39A—C39—H39B 109.3
C23—C22—C21 120.2 (5) C38A—C37A—H37C 110.4
C27—C22—C21 121.8 (5) C38A—C37A—H37D 110.4
C22—C23—C24 121.6 (7) H37C—C37A—H37D 108.6
C22—C23—H23 119.2 C37A—C38A—H38C 111.0
C24—C23—H23 119.2 C37A—C38A—H38D 111.0
C25—C24—C23 118.8 (7) H38C—C38A—H38D 109.0
N31—Zn1—O11—C11 173.5 (5) C14—C15—C16—C17 −2.3 (11)
O21—Zn1—O11—C11 −83.5 (5) C15—C16—C17—C12 2.2 (10)
O12—Zn1—O11—C11 0.1 (8) C13—C12—C17—C16 −2.8 (9)
O22—Zn1—O11—C11 75.8 (5) C11—C12—C17—C16 175.6 (5)
Zn1i—Zn1—O11—C11 3.9 (5) Zn1—O21—C21—O22i 0.0 (7)
N31—Zn1—O12—C11i −162.7 (4) Zn1—O21—C21—C22 −179.7 (3)
O21—Zn1—O12—C11i 94.0 (5) O21—C21—C22—C23 174.1 (5)
O22—Zn1—O12—C11i −65.2 (5) O22i—C21—C22—C23 −5.6 (7)
O11—Zn1—O12—C11i 10.7 (8) O21—C21—C22—C27 −6.7 (7)
Zn1i—Zn1—O12—C11i 7.0 (4) O22i—C21—C22—C27 173.6 (5)
N31—Zn1—O21—C21 176.1 (4) C27—C22—C23—C24 0.3 (9)
O12—Zn1—O21—C21 −82.2 (4) C21—C22—C23—C24 179.5 (6)
O22—Zn1—O21—C21 −3.3 (7) C22—C23—C24—C25 −2.0 (12)
O11—Zn1—O21—C21 76.2 (4) C23—C24—C25—C26 2.4 (13)
Zn1i—Zn1—O21—C21 −0.8 (4) C24—C25—C26—C27 −1.0 (12)
N31—Zn1—O22—C21i −175.1 (5) C23—C22—C27—C26 1.1 (9)
O21—Zn1—O22—C21i 4.4 (8) C21—C22—C27—C26 −178.1 (5)
O12—Zn1—O22—C21i 83.8 (5) C25—C26—C27—C22 −0.8 (10)
O11—Zn1—O22—C21i −75.2 (5) C35—N31—C31—C32 −0.5 (9)
Zn1i—Zn1—O22—C21i 1.8 (5) Zn1—N31—C31—C32 −175.5 (5)
O21—Zn1—N31—C35 110.2 (4) N31—C31—C32—C33 0.8 (10)
O12—Zn1—N31—C35 18.1 (5) C39—N32—C33—C32 178.5 (6)
O22—Zn1—N31—C35 −70.0 (4) C36—N32—C33—C32 −1.1 (9)
O11—Zn1—N31—C35 −159.4 (4) C39—N32—C33—C34 −3.7 (9)
Zn1i—Zn1—N31—C35 −86.5 (8) C36—N32—C33—C34 176.7 (6)
O21—Zn1—N31—C31 −75.2 (5) C31—C32—C33—N32 176.6 (6)
O12—Zn1—N31—C31 −167.3 (4) C31—C32—C33—C34 −1.3 (9)
O22—Zn1—N31—C31 104.7 (4) N32—C33—C34—C35 −176.4 (6)
O11—Zn1—N31—C31 15.2 (5) C32—C33—C34—C35 1.6 (9)
Zn1i—Zn1—N31—C31 88.1 (8) C31—N31—C35—C34 0.8 (9)
Zn1—O11—C11—O12i −10.9 (9) Zn1—N31—C35—C34 175.8 (5)
Zn1—O11—C11—C12 171.0 (3) C33—C34—C35—N31 −1.4 (10)
O11—C11—C12—C13 −4.1 (8) C33—N32—C36—C37 −172.3 (9)
O12i—C11—C12—C13 177.6 (5) C39—N32—C36—C37 8.1 (10)
O11—C11—C12—C17 177.5 (5) N32—C36—C37—C38 −30.5 (16)
O12i—C11—C12—C17 −0.7 (7) C36—C37—C38—C39 42 (2)
C17—C12—C13—C14 3.6 (9) C33—N32—C39—C38 −162.0 (9)
C11—C12—C13—C14 −174.8 (5) C36—N32—C39—C38 17.6 (10)
C12—C13—C14—C15 −3.6 (9) C37—C38—C39—N32 −36.8 (17)
C13—C14—C15—C16 3.0 (11)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2962).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev.252, 1093–1107.
  3. Karmakar, A., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun.9, 1169–1172.
  4. Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [DOI] [PMC free article] [PubMed]
  5. Necefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121–m122.
  6. Ohmura, T., Mori, W., Takei, T., Ikeda, T. & Maeda, A. (2005). Mater. Sci. Pol.23, 729–736.
  7. Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [DOI] [PMC free article] [PubMed]
  8. Parkin, G. (2004). Chem. Rev.104, 699–767. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. [DOI] [PMC free article] [PubMed]
  11. Song, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495–m1496. [DOI] [PMC free article] [PubMed]
  12. Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev.104, 987–1012. [DOI] [PubMed]
  13. Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [DOI] [PMC free article] [PubMed]
  14. Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. [DOI] [PMC free article] [PubMed]
  15. Zeleňák, V., Sabo, M., Massa, W. & Černák, J. (2004). Acta Cryst. C60, m85–m87. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052714/lh2962sup1.cif

e-66-00m61-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052714/lh2962Isup2.hkl

e-66-00m61-Isup2.hkl (203.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES