Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o44. doi: 10.1107/S1600536809051642

2-(4-Fluoro­phen­yl)-5-iodo-3-methyl­sulfinyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2980179  PMID: 21580148

Abstract

In the title compound, C15H10FIO2S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane by a dihedral angle of 28.33 (5)°. The crystal structure is stabilized by a weak non-classical inter­molecular C—H⋯O hydrogen bond and an I⋯O halogen interaction [3.211 (1) Å].

Related literature

For the crystal structures of similar 2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b ). For natural products with benzofuran ring systems, see: Akgul & Anil (2003); Soekamto et al. (2003). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009). For a review of halogen bonding, see: Politzer et al. (2007).graphic file with name e-66-00o44-scheme1.jpg

Experimental

Crystal data

  • C15H10FIO2S

  • M r = 400.19

  • Triclinic, Inline graphic

  • a = 8.1045 (2) Å

  • b = 8.2699 (2) Å

  • c = 11.0999 (3) Å

  • α = 94.538 (1)°

  • β = 91.118 (1)°

  • γ = 111.982 (1)°

  • V = 686.73 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 173 K

  • 0.32 × 0.31 × 0.30 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.504, T max = 0.526

  • 12180 measured reflections

  • 3179 independent reflections

  • 3130 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.047

  • S = 1.17

  • 3179 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536809051642/zq2022sup1.cif

e-66-00o44-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051642/zq2022Isup2.hkl

e-66-00o44-Isup2.hkl (155.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.53 3.432 (2) 158

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Molecules involving benzofuran moiety have attracted widespread interest owing to their presence in natural products (Akgul & Anil, 2003; Soekamto et al., 2003) and their biological activity (Aslam et al., 2006; Galal et al., 2009). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 28.33 (5)°. The crystal packing (Fig. 2) is stabilized by a weak non-classical intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the S═O unit, with a C10—H10···O2i (Table 1), and an I···O halogen bond between the iodine and the oxygen of the S═O unit [I···O2ii = 3.211 (1) Å; C—I···Oii = 170.98 (5)°] (Politzer et al., 2007).

Experimental

77% 3-Chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5-iodo-3-methylsulfanyl-1-benzofuran (384 mg, 1.0 mmol) in dichloromethane (20 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 87%, m.p. 485–486 K; Rf = 0.66 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroforrm at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

C—H···O and C—I···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y + 1, - z; (iii) x, y, z + 1.]

Crystal data

C15H10FIO2S Z = 2
Mr = 400.19 F(000) = 388
Triclinic, P1 Dx = 1.935 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1045 (2) Å Cell parameters from 9982 reflections
b = 8.2699 (2) Å θ = 2.7–27.7°
c = 11.0999 (3) Å µ = 2.49 mm1
α = 94.538 (1)° T = 173 K
β = 91.118 (1)° Block, colourless
γ = 111.982 (1)° 0.32 × 0.31 × 0.30 mm
V = 686.73 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3179 independent reflections
Radiation source: Rotating Anode 3130 reflections with I > 2σ(I)
HELIOS Rint = 0.024
Detector resolution: 10.0 pixels mm-1 θmax = 27.7°, θmin = 1.8°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −10→10
Tmin = 0.504, Tmax = 0.526 l = −13→14
12180 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 Hydrogen site location: difference Fourier map
wR(F2) = 0.047 H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2941P] where P = (Fo2 + 2Fc2)/3
3179 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.89 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I 0.388646 (14) 0.197645 (13) −0.026745 (9) 0.02319 (5)
S 0.80967 (5) 0.78626 (5) 0.39558 (4) 0.01979 (9)
F 1.07549 (17) 0.74121 (17) 0.98010 (11) 0.0369 (3)
O1 0.65247 (16) 0.31158 (15) 0.51009 (11) 0.0203 (2)
O2 0.67539 (17) 0.81288 (17) 0.31415 (13) 0.0269 (3)
C1 0.7317 (2) 0.5608 (2) 0.41682 (15) 0.0185 (3)
C2 0.6277 (2) 0.4171 (2) 0.33021 (15) 0.0176 (3)
C3 0.5720 (2) 0.3991 (2) 0.20821 (15) 0.0195 (3)
H3 0.6019 0.4976 0.1624 0.023*
C4 0.4713 (2) 0.2317 (2) 0.15682 (15) 0.0195 (3)
C5 0.4243 (2) 0.0842 (2) 0.22213 (16) 0.0218 (3)
H5 0.3537 −0.0280 0.1834 0.026*
C6 0.4802 (2) 0.1007 (2) 0.34311 (16) 0.0217 (3)
H6 0.4509 0.0024 0.3889 0.026*
C7 0.5807 (2) 0.2682 (2) 0.39309 (15) 0.0189 (3)
C8 0.7428 (2) 0.4910 (2) 0.52316 (15) 0.0185 (3)
C9 0.8296 (2) 0.5608 (2) 0.64234 (16) 0.0189 (3)
C10 0.7577 (2) 0.4728 (2) 0.74357 (16) 0.0210 (3)
H10 0.6515 0.3708 0.7340 0.025*
C11 0.8411 (2) 0.5344 (2) 0.85731 (17) 0.0240 (3)
H11 0.7935 0.4752 0.9262 0.029*
C12 0.9944 (2) 0.6832 (2) 0.86850 (17) 0.0247 (4)
C13 1.0692 (2) 0.7737 (2) 0.77148 (18) 0.0258 (4)
H13 1.1747 0.8763 0.7823 0.031*
C14 0.9860 (2) 0.7105 (2) 0.65755 (17) 0.0230 (3)
H14 1.0360 0.7697 0.5891 0.028*
C15 0.9920 (3) 0.7971 (3) 0.3035 (2) 0.0335 (4)
H15A 0.9474 0.7159 0.2304 0.050*
H15B 1.0779 0.7646 0.3491 0.050*
H15C 1.0506 0.9166 0.2806 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I 0.03081 (8) 0.02065 (7) 0.01672 (7) 0.00884 (5) −0.00240 (5) −0.00103 (4)
S 0.02125 (19) 0.01521 (18) 0.0224 (2) 0.00624 (15) 0.00127 (15) 0.00201 (15)
F 0.0418 (7) 0.0385 (7) 0.0225 (6) 0.0071 (5) −0.0113 (5) 0.0010 (5)
O1 0.0245 (6) 0.0177 (6) 0.0171 (6) 0.0059 (5) 0.0003 (5) 0.0025 (4)
O2 0.0258 (6) 0.0245 (6) 0.0324 (7) 0.0108 (5) −0.0005 (5) 0.0085 (5)
C1 0.0200 (7) 0.0166 (7) 0.0185 (8) 0.0067 (6) 0.0011 (6) 0.0009 (6)
C2 0.0188 (7) 0.0157 (7) 0.0188 (8) 0.0070 (6) 0.0021 (6) 0.0012 (6)
C3 0.0235 (8) 0.0182 (7) 0.0175 (8) 0.0086 (6) 0.0009 (6) 0.0026 (6)
C4 0.0225 (8) 0.0210 (8) 0.0159 (8) 0.0095 (6) 0.0008 (6) 0.0001 (6)
C5 0.0238 (8) 0.0190 (8) 0.0210 (9) 0.0067 (6) 0.0021 (6) −0.0005 (6)
C6 0.0256 (8) 0.0175 (8) 0.0214 (9) 0.0067 (6) 0.0039 (6) 0.0049 (6)
C7 0.0212 (7) 0.0208 (8) 0.0154 (8) 0.0087 (6) 0.0022 (6) 0.0023 (6)
C8 0.0187 (7) 0.0168 (7) 0.0201 (8) 0.0066 (6) 0.0021 (6) 0.0015 (6)
C9 0.0200 (7) 0.0210 (8) 0.0177 (8) 0.0102 (6) 0.0014 (6) 0.0017 (6)
C10 0.0217 (8) 0.0217 (8) 0.0203 (8) 0.0091 (6) 0.0017 (6) 0.0020 (6)
C11 0.0280 (9) 0.0263 (9) 0.0196 (9) 0.0118 (7) 0.0022 (7) 0.0045 (7)
C12 0.0276 (9) 0.0273 (9) 0.0200 (9) 0.0122 (7) −0.0057 (7) −0.0004 (7)
C13 0.0220 (8) 0.0261 (9) 0.0257 (9) 0.0058 (7) −0.0025 (7) 0.0006 (7)
C14 0.0212 (8) 0.0247 (8) 0.0220 (9) 0.0068 (7) 0.0014 (6) 0.0047 (7)
C15 0.0265 (9) 0.0312 (10) 0.0470 (13) 0.0128 (8) 0.0145 (9) 0.0157 (9)

Geometric parameters (Å, °)

I—C4 2.096 (2) C6—C7 1.380 (2)
I—O2i 3.211 (1) C6—H6 0.9500
S—O2 1.491 (1) C8—C9 1.455 (2)
S—C1 1.768 (2) C9—C14 1.397 (2)
S—C15 1.792 (2) C9—C10 1.403 (2)
F—C12 1.354 (2) C10—C11 1.385 (3)
O1—C7 1.376 (2) C10—H10 0.9500
O1—C8 1.381 (2) C11—C12 1.378 (3)
C1—C8 1.370 (2) C11—H11 0.9500
C1—C2 1.444 (2) C12—C13 1.379 (3)
C2—C7 1.394 (2) C13—C14 1.388 (3)
C2—C3 1.398 (2) C13—H13 0.9500
C3—C4 1.385 (2) C14—H14 0.9500
C3—H3 0.9500 C15—H15A 0.9800
C4—C5 1.401 (2) C15—H15B 0.9800
C5—C6 1.388 (3) C15—H15C 0.9800
C5—H5 0.9500
C4—I—O2i 170.98 (5) C1—C8—C9 135.10 (16)
O2—S—C1 107.38 (8) O1—C8—C9 114.45 (14)
O2—S—C15 105.67 (9) C14—C9—C10 119.35 (16)
C1—S—C15 98.36 (9) C14—C9—C8 121.35 (16)
C7—O1—C8 106.78 (13) C10—C9—C8 119.27 (15)
C8—C1—C2 107.00 (14) C11—C10—C9 120.17 (17)
C8—C1—S 125.99 (13) C11—C10—H10 119.9
C2—C1—S 126.68 (13) C9—C10—H10 119.9
C7—C2—C3 119.08 (15) C12—C11—C10 118.64 (17)
C7—C2—C1 105.32 (14) C12—C11—H11 120.7
C3—C2—C1 135.60 (15) C10—C11—H11 120.7
C4—C3—C2 117.23 (15) F—C12—C11 118.06 (17)
C4—C3—H3 121.4 F—C12—C13 118.91 (17)
C2—C3—H3 121.4 C11—C12—C13 123.02 (17)
C3—C4—C5 122.69 (16) C12—C13—C14 118.09 (17)
C3—C4—I 118.60 (12) C12—C13—H13 121.0
C5—C4—I 118.71 (13) C14—C13—H13 121.0
C6—C5—C4 120.44 (16) C13—C14—C9 120.72 (17)
C6—C5—H5 119.8 C13—C14—H14 119.6
C4—C5—H5 119.8 C9—C14—H14 119.6
C7—C6—C5 116.26 (16) S—C15—H15A 109.5
C7—C6—H6 121.9 S—C15—H15B 109.5
C5—C6—H6 121.9 H15A—C15—H15B 109.5
O1—C7—C6 125.22 (15) S—C15—H15C 109.5
O1—C7—C2 110.46 (14) H15A—C15—H15C 109.5
C6—C7—C2 124.30 (16) H15B—C15—H15C 109.5
C1—C8—O1 110.43 (14)
O2—S—C1—C8 −140.15 (15) C1—C2—C7—C6 −179.85 (16)
C15—S—C1—C8 110.45 (17) C2—C1—C8—O1 0.04 (18)
O2—S—C1—C2 32.41 (17) S—C1—C8—O1 173.80 (12)
C15—S—C1—C2 −76.99 (16) C2—C1—C8—C9 178.16 (17)
C8—C1—C2—C7 0.84 (18) S—C1—C8—C9 −8.1 (3)
S—C1—C2—C7 −172.87 (13) C7—O1—C8—C1 −0.91 (18)
C8—C1—C2—C3 −178.44 (18) C7—O1—C8—C9 −179.46 (13)
S—C1—C2—C3 7.8 (3) C1—C8—C9—C14 −28.7 (3)
C7—C2—C3—C4 0.3 (2) O1—C8—C9—C14 149.37 (16)
C1—C2—C3—C4 179.47 (17) C1—C8—C9—C10 153.29 (19)
C2—C3—C4—C5 0.3 (2) O1—C8—C9—C10 −28.6 (2)
C2—C3—C4—I −178.89 (11) C14—C9—C10—C11 0.1 (2)
C3—C4—C5—C6 −0.8 (3) C8—C9—C10—C11 178.20 (15)
I—C4—C5—C6 178.41 (13) C9—C10—C11—C12 0.3 (3)
C4—C5—C6—C7 0.6 (2) C10—C11—C12—F −179.46 (16)
C8—O1—C7—C6 179.87 (16) C10—C11—C12—C13 −0.2 (3)
C8—O1—C7—C2 1.47 (18) F—C12—C13—C14 178.88 (16)
C5—C6—C7—O1 −178.21 (15) C11—C12—C13—C14 −0.4 (3)
C5—C6—C7—C2 0.0 (3) C12—C13—C14—C9 0.8 (3)
C3—C2—C7—O1 177.99 (14) C10—C9—C14—C13 −0.7 (3)
C1—C2—C7—O1 −1.44 (18) C8—C9—C14—C13 −178.75 (16)
C3—C2—C7—C6 −0.4 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···O2ii 0.95 2.53 3.432 (2) 158

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2022).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron62, 4214–4226.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). SADABS APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2608. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2649. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  9. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536809051642/zq2022sup1.cif

e-66-00o44-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051642/zq2022Isup2.hkl

e-66-00o44-Isup2.hkl (155.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES