Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 16;66(Pt 1):o163–o164. doi: 10.1107/S1600536809053410

Gabapentin-lactum–chloranilic acid (1/1)

Jerry P Jasinski a,*, Ray J Butcher b, Q N M Hakim Al-arique c, H S Yathirajan c, B Narayana d
PMCID: PMC2980187  PMID: 21580051

Abstract

In the title compound, C9H15NO·C6H2Cl2O4 [sytematic name: 2-aza­spiro­[4.5]decan-3-one–chloranilic acid (1/1)], the cyclo­hexane ring of the lactam molecule adopts a slightly distorted normal chair conformation and the five-membered 3-aza­spiro ring is in a slightly distorted chair conformation. The dihedral angle between the least-squares planes of the cyclohexane and 3-azaspiro rings is 84.0 (3)°. In the crystal, the chloranilic acid mol­ecule and the gabapentin-lactum mol­ecules are held together by strong inter­molecular N—H⋯O and O—H⋯O hydrogen bonds with two bifurcated O acceptor atoms on the chloranilic acid mol­ecule and one on the gabapentin-lactum mol­ecule, each bonding with an inter- and intra­molecular hydrogen bond. The molecules are linked into chains parallel to (011) and propagating along the b axis.

Related literature

For the neuroprotective properties of gabapentin-lactam and related compounds, see: Lagreze et al. (2001); Henle et al. (2006); Bowery (1993). For the synthesis and spectroscopic studies of chloranilic acid charge-transfer complexes, see: Al-Attas et al. (2009). For related structures, see: Gotoh et al. (2008); Ibers (2001); Ishida (2004); Ishida & Kashino (2000); Jasinski et al. (2009). For density functional theory (DFT), see: Frisch et al. (2004); Hehre et al. (1986); Schmidt & Polik (2007).graphic file with name e-66-0o163-scheme1.jpg

Experimental

Crystal data

  • C9H15NO·C6H2Cl2O4

  • M r = 362.20

  • Triclinic, Inline graphic

  • a = 6.6127 (9) Å

  • b = 9.5800 (11) Å

  • c = 13.0724 (13) Å

  • α = 102.679 (9)°

  • β = 91.934 (9)°

  • γ = 98.481 (10)°

  • V = 797.23 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.90 mm−1

  • T = 110 K

  • 0.47 × 0.42 × 0.15 mm

Data collection

  • Goniometer Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.200, T max = 0.557

  • 5138 measured reflections

  • 3123 independent reflections

  • 2731 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.05

  • 3123 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053410/ng2704sup1.cif

e-66-0o163-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053410/ng2704Isup2.hkl

e-66-0o163-Isup2.hkl (153.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2Ai 0.84 1.97 2.7493 (19) 153
O1A—H1A⋯O2A 0.84 2.20 2.671 (2) 115
O3A—H3A⋯O1Bii 0.84 1.70 2.4807 (19) 153
O3A—H3A⋯O4A 0.84 2.26 2.7148 (19) 114
N2B—H2BA⋯O1Bii 0.88 2.07 2.913 (2) 161
N2B—H2BA⋯O4A 0.88 2.53 3.091 (2) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Gabapentin-lactum (systematic name: 3-azaspiro-[4,5]-decan-2-one), is an intermediate for the preparation of gabapentin. Gabapentin-lactam (GBP-L) is also a derivative of the anti-convulsant drug gabapentin. The neuroprotective properties of gabapentin-lactam are described (Lagreze et al. 2001). Gabapentin is currently used as a therapeutic agent against epilepsy as well as neuropathic pain. In contrast to gabapentin, its derivative gabapentin-lactam has a pronounced neuroprotective activity (Henle et al. 2006). Gabapentin is structurally related to the neurotransmitteraminobutyric acid (GABA), which has been widely studied for its significant inhibitory action in the central nervous system (Bowery, 1993). We have recently reported a crystal structure of a second polymorph of gabapentin hydrochloride hemihydrate with a three-center bifurcated hydrogen bond (Jasinski et al. 2009).

Chloranilic acid is a strong dibasic organic acid which exhibits electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer, hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Also, protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol (Al-Attas, Habeeb & Al-Raimi, 2009) have been studied. In view of the importance of gabapentin-lactam, this paper reports the interaction of Gabapentin-lactam as an electron donor with chloranilic acid as an electron acceptor resulting in the formation of a charge transfer complex (I) while the two molecules are held together by intermolecular hydrogen bonding interactions.

The title compound,C9H15NO.C6H2Cl2O4,(I), is composed of two independent molecules, gabapentin-lactum (C9H15NO) and chloranilic acid (C6H2Cl2O4),in the asymmetric unit (1:1) (Fig.1). In the gabapentin-lactum molecule the cyclohexane ring (C4B—C9B) adopts a slightly distorted normal chair conformation and the 5-membered 3-Azaspiro ring is in a slightly distorted half-chair conformation The N2B and C1B atoms are sp2 hybridized while the C3B, C4B and C10B atoms are sp3. The C10B—C4B—C5B—C6B, N2B—C3B—C4B—C5B and N2B—C3B—C4B—C9B torsion angles are 177.77 (17)°, -136.89 (16)° and 101.19 (17)°, respectively, indicating a significant twist between the 3-azaspiro and cyclohexane rings while sharing a corner C4B atom. The dihedral angle between the least squares planes of these two rings measures 84.0 (3)°. The planar chloranilic acid molecule and gabapentin-lactum molecules are held together by N—H···O and O—H···O intermolecular hydrogen bonds with two bifurcated oxygen acceptor atoms on the chloranilic acid molecule (O2A & O4A) and one on the gabapentin-lactum molecule (O1B), each bifurcating with an inter and intra molecular hydrogen bond, respectively (Fig. 3, Table 1). This produces a set of O—H···O—H···O—H infinite chains along the b axis in (011). The O=C—N—H groups from the 3-azaspiro groups in adjacent gabapentin-lactum molecules form a R2,2(8) graph set motif, while the O=C—C—O—H groups from symmetry related chloranilic acid molecules form a R2,2(10) graph set motif in the unit cell (Fig. 3). The dihedral angles between mean planes of the chloranilic acid molecule and the 3-azaspiro and cyclohexane rings of the gabapentin-lactum molecule are 7.0 (1)° and 77.0 (1)°, respectively. In addition, weak Cg3···Cg3 [= 3.680 (1) Å; slippage = 1.825 Å; -x, 1 - y,1 - z] intermolecular interactions are observed where Cg3 = C1A–C6A, which contribute to crystal packing.

Following a geometry optimization, density functional theory (DFT) calculation at the B3LYP 6–31-G(d) level (Hehre et al., 1986; Schmidt & Polik, 2007) with the Gaussian03 program package (Frisch at al., 2004) the dihederal angle between the least squares planes of the 3-azaspiro and cyclohexane rings in the gabapentin-lactum molecule become 79.2 (9)° compared to 84.0 (3)° in the crystal. The dihedral angles between mean planes of the chloranilic acid molecule and the 3-azaspiro and cyclohexane rings of the gabapentin-lactum molecule become 2.0 (0)° and 77.2 (9)°, respectively, versus 7.0 (1)° and 77.0 (1)° observed in the crystal. Starting geometries were taken from X-ray refinement data. This suggests that strong N—H···O and O—H···O intermolecular hydrogen bonds and weak intermolecular Cg···Cg intermolecular interactions, collectively, influence crystal packing.

Experimental

The title compound was synthesized by adding a solution of chloranilic acid (0.42 g, 2 mmol) in 10 ml me thanol to a solution of gabapentin-lactam (0.21 g, 2 mmol) in 10 ml me thanol. A red color developed and the solution was allowed to evaporate slowly at room temperature. The red colored complex formed was filtered off, washed with diethyl ether and dried under vacuum. X-ray quality crystals were grown from methanol:water (80:20 v/v) solvent mixture (m.p.: 439–442 K). Analysis for C15H17Cl2NO5: Found (Calculated): C:49.68 (49.74); H: 4.70 (4.73); N:3.85 (3.87).

Refinement

The hydroxyl and aza hydrogen atoms (H1A, H3A & H2B) were obtained from a difference fourier map. The rest of the H atoms were placed in their calculated positions and then refined using the riding model with O—H = 0.84 Å, N—H = 0.88 Å, C—H = 0.99 Å, and with Uiso(H) = 1.18–1.22Ueq(C,O,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of C9H15NO.C6H2Cl2O4 showing the atom labeling scheme and 50% probability displacement ellipsoids. H atoms are presented as small circles of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate strong N—H···O and O—H···O intermoloecular hydrogen bonds linking the C9H15NO and C6H2Cl2O4 molecules into an infinite O—H···O—H···O—H chain network along the b axis in (011).

Crystal data

C9H15NO·C6H2Cl2O4 Z = 2
Mr = 362.20 F(000) = 376
Triclinic, P1 Dx = 1.509 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 6.6127 (9) Å Cell parameters from 3438 reflections
b = 9.5800 (11) Å θ = 4.8–74.0°
c = 13.0724 (13) Å µ = 3.90 mm1
α = 102.679 (9)° T = 110 K
β = 91.934 (9)° Irregular plate, red-brown
γ = 98.481 (10)° 0.47 × 0.42 × 0.15 mm
V = 797.23 (16) Å3

Data collection

Goniometer Xcalibur diffractometer with a Ruby (Gemini Cu) detector 3123 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2731 reflections with I > 2σ(I)
graphite Rint = 0.025
Detector resolution: 10.5081 pixels mm-1 θmax = 74.2°, θmin = 4.8°
ω scans h = −8→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −10→11
Tmin = 0.200, Tmax = 0.557 l = −15→16
5138 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.4046P] where P = (Fo2 + 2Fc2)/3
3123 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.07819 (8) 0.35536 (5) 0.25360 (3) 0.02058 (15)
Cl2 0.30441 (7) 0.39346 (5) 0.73387 (3) 0.01894 (15)
O1A 0.0035 (2) 0.11592 (14) 0.36708 (11) 0.0185 (3)
H1A −0.0101 0.0550 0.4048 0.022*
O2A 0.1030 (2) 0.13961 (14) 0.57058 (11) 0.0198 (3)
O3A 0.3781 (2) 0.63101 (14) 0.62265 (11) 0.0168 (3)
H3A 0.3800 0.6958 0.5885 0.020*
O4A 0.2633 (2) 0.61192 (14) 0.41806 (11) 0.0174 (3)
C1A 0.1342 (3) 0.3619 (2) 0.38385 (15) 0.0142 (4)
C2A 0.0914 (3) 0.2440 (2) 0.42497 (15) 0.0149 (4)
C3A 0.1454 (3) 0.25105 (19) 0.53885 (15) 0.0142 (4)
C4A 0.2436 (3) 0.3875 (2) 0.60388 (14) 0.0139 (4)
C5A 0.2870 (3) 0.50807 (19) 0.56472 (15) 0.0134 (4)
C6A 0.2301 (3) 0.50147 (19) 0.45017 (15) 0.0132 (4)
O1B 0.5433 (2) 1.13507 (14) 0.43096 (11) 0.0189 (3)
C1B 0.4590 (3) 1.03933 (19) 0.35294 (15) 0.0147 (4)
N2B 0.3806 (3) 0.90640 (16) 0.35775 (12) 0.0158 (3)
H2BA 0.3923 0.8731 0.4149 0.019*
C3B 0.2729 (3) 0.8193 (2) 0.26005 (14) 0.0163 (4)
H3BA 0.1226 0.8081 0.2654 0.020*
H3BB 0.3141 0.7220 0.2424 0.020*
C4B 0.3395 (3) 0.90694 (19) 0.17620 (14) 0.0155 (4)
C5B 0.1561 (3) 0.9111 (2) 0.10248 (16) 0.0214 (4)
H5BA 0.0461 0.9484 0.1448 0.026*
H5BB 0.1986 0.9785 0.0568 0.026*
C6B 0.0727 (4) 0.7610 (2) 0.03391 (17) 0.0288 (5)
H6BA 0.0190 0.6956 0.0791 0.035*
H6BB −0.0418 0.7686 −0.0143 0.035*
C7B 0.2397 (4) 0.6977 (3) −0.02991 (17) 0.0320 (5)
H7BA 0.2827 0.7577 −0.0805 0.038*
H7BB 0.1841 0.5986 −0.0705 0.038*
C8B 0.4253 (4) 0.6919 (2) 0.04056 (17) 0.0278 (5)
H8BA 0.5350 0.6579 −0.0036 0.033*
H8BB 0.3866 0.6216 0.0847 0.033*
C9B 0.5062 (3) 0.8409 (2) 0.11141 (16) 0.0198 (4)
H9BA 0.5625 0.9073 0.0674 0.024*
H9BB 0.6193 0.8318 0.1598 0.024*
C10B 0.4297 (3) 1.0593 (2) 0.24256 (15) 0.0175 (4)
H10A 0.5621 1.0955 0.2170 0.021*
H10B 0.3340 1.1288 0.2394 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0306 (3) 0.0172 (2) 0.0145 (2) 0.00588 (19) −0.00172 (18) 0.00410 (18)
Cl2 0.0277 (3) 0.0151 (2) 0.0153 (2) 0.00428 (18) −0.00131 (18) 0.00606 (17)
O1A 0.0265 (7) 0.0099 (6) 0.0176 (7) −0.0005 (5) 0.0004 (6) 0.0026 (5)
O2A 0.0281 (8) 0.0111 (6) 0.0211 (7) 0.0016 (6) 0.0049 (6) 0.0057 (5)
O3A 0.0228 (7) 0.0093 (6) 0.0179 (7) −0.0007 (5) −0.0029 (5) 0.0048 (5)
O4A 0.0214 (7) 0.0131 (7) 0.0194 (7) 0.0022 (5) 0.0020 (5) 0.0076 (5)
C1A 0.0154 (9) 0.0149 (9) 0.0141 (9) 0.0062 (7) 0.0023 (7) 0.0042 (7)
C2A 0.0144 (9) 0.0112 (8) 0.0183 (9) 0.0032 (7) 0.0023 (7) 0.0008 (7)
C3A 0.0154 (9) 0.0107 (9) 0.0184 (9) 0.0048 (7) 0.0048 (7) 0.0047 (7)
C4A 0.0168 (9) 0.0125 (9) 0.0138 (9) 0.0051 (7) 0.0017 (7) 0.0042 (7)
C5A 0.0112 (9) 0.0113 (9) 0.0184 (9) 0.0036 (7) 0.0014 (7) 0.0037 (7)
C6A 0.0122 (8) 0.0108 (9) 0.0179 (9) 0.0043 (7) 0.0027 (7) 0.0044 (7)
O1B 0.0276 (8) 0.0112 (6) 0.0166 (7) −0.0010 (5) −0.0015 (6) 0.0036 (5)
C1B 0.0170 (9) 0.0110 (8) 0.0166 (9) 0.0029 (7) 0.0014 (7) 0.0037 (7)
N2B 0.0236 (8) 0.0109 (7) 0.0130 (8) 0.0012 (6) −0.0001 (6) 0.0044 (6)
C3B 0.0245 (10) 0.0116 (8) 0.0123 (9) 0.0004 (7) 0.0009 (7) 0.0032 (7)
C4B 0.0224 (10) 0.0106 (9) 0.0138 (9) 0.0024 (7) 0.0013 (7) 0.0038 (7)
C5B 0.0251 (10) 0.0216 (10) 0.0192 (10) 0.0078 (8) −0.0004 (8) 0.0058 (8)
C6B 0.0350 (12) 0.0279 (12) 0.0208 (10) 0.0012 (9) −0.0075 (9) 0.0034 (9)
C7B 0.0492 (15) 0.0252 (11) 0.0174 (10) 0.0041 (10) −0.0010 (10) −0.0022 (8)
C8B 0.0413 (13) 0.0195 (10) 0.0229 (10) 0.0115 (9) 0.0078 (9) 0.0002 (8)
C9B 0.0245 (10) 0.0173 (9) 0.0193 (9) 0.0054 (8) 0.0042 (8) 0.0060 (8)
C10B 0.0268 (10) 0.0112 (9) 0.0155 (9) 0.0030 (7) 0.0024 (8) 0.0049 (7)

Geometric parameters (Å, °)

Cl1—C1A 1.7158 (19) C3B—H3BB 0.9900
Cl2—C4A 1.7196 (18) C4B—C5B 1.534 (3)
O1A—C2A 1.330 (2) C4B—C9B 1.538 (3)
O1A—H1A 0.8400 C4B—C10B 1.546 (2)
O2A—C3A 1.227 (2) C5B—C6B 1.530 (3)
O3A—C5A 1.301 (2) C5B—H5BA 0.9900
O3A—H3A 0.8400 C5B—H5BB 0.9900
O4A—C6A 1.215 (2) C6B—C7B 1.523 (3)
C1A—C2A 1.352 (3) C6B—H6BA 0.9900
C1A—C6A 1.465 (3) C6B—H6BB 0.9900
C2A—C3A 1.504 (3) C7B—C8B 1.525 (3)
C3A—C4A 1.441 (3) C7B—H7BA 0.9900
C4A—C5A 1.361 (3) C7B—H7BB 0.9900
C5A—C6A 1.517 (3) C8B—C9B 1.531 (3)
O1B—C1B 1.262 (2) C8B—H8BA 0.9900
C1B—N2B 1.318 (2) C8B—H8BB 0.9900
C1B—C10B 1.507 (2) C9B—H9BA 0.9900
N2B—C3B 1.460 (2) C9B—H9BB 0.9900
N2B—H2BA 0.8800 C10B—H10A 0.9900
C3B—C4B 1.558 (2) C10B—H10B 0.9900
C3B—H3BA 0.9900
C2A—O1A—H1A 109.5 C10B—C4B—C3B 103.66 (14)
C5A—O3A—H3A 109.5 C6B—C5B—C4B 111.76 (17)
C2A—C1A—C6A 120.62 (17) C6B—C5B—H5BA 109.3
C2A—C1A—Cl1 121.97 (15) C4B—C5B—H5BA 109.3
C6A—C1A—Cl1 117.41 (14) C6B—C5B—H5BB 109.3
O1A—C2A—C1A 122.13 (17) C4B—C5B—H5BB 109.3
O1A—C2A—C3A 116.63 (16) H5BA—C5B—H5BB 107.9
C1A—C2A—C3A 121.23 (16) C7B—C6B—C5B 110.90 (19)
O2A—C3A—C4A 124.02 (17) C7B—C6B—H6BA 109.5
O2A—C3A—C2A 117.66 (17) C5B—C6B—H6BA 109.5
C4A—C3A—C2A 118.32 (16) C7B—C6B—H6BB 109.5
C5A—C4A—C3A 121.67 (17) C5B—C6B—H6BB 109.5
C5A—C4A—Cl2 120.66 (14) H6BA—C6B—H6BB 108.0
C3A—C4A—Cl2 117.67 (14) C6B—C7B—C8B 111.52 (18)
O3A—C5A—C4A 121.97 (17) C6B—C7B—H7BA 109.3
O3A—C5A—C6A 118.01 (16) C8B—C7B—H7BA 109.3
C4A—C5A—C6A 120.03 (16) C6B—C7B—H7BB 109.3
O4A—C6A—C1A 123.11 (17) C8B—C7B—H7BB 109.3
O4A—C6A—C5A 118.78 (16) H7BA—C7B—H7BB 108.0
C1A—C6A—C5A 118.10 (15) C7B—C8B—C9B 111.18 (17)
O1B—C1B—N2B 123.96 (17) C7B—C8B—H8BA 109.4
O1B—C1B—C10B 125.82 (16) C9B—C8B—H8BA 109.4
N2B—C1B—C10B 110.21 (16) C7B—C8B—H8BB 109.4
C1B—N2B—C3B 114.19 (15) C9B—C8B—H8BB 109.4
C1B—N2B—H2BA 122.9 H8BA—C8B—H8BB 108.0
C3B—N2B—H2BA 122.9 C8B—C9B—C4B 112.62 (17)
N2B—C3B—C4B 104.11 (15) C8B—C9B—H9BA 109.1
N2B—C3B—H3BA 110.9 C4B—C9B—H9BA 109.1
C4B—C3B—H3BA 110.9 C8B—C9B—H9BB 109.1
N2B—C3B—H3BB 110.9 C4B—C9B—H9BB 109.1
C4B—C3B—H3BB 110.9 H9BA—C9B—H9BB 107.8
H3BA—C3B—H3BB 109.0 C1B—C10B—C4B 105.01 (15)
C5B—C4B—C9B 109.57 (15) C1B—C10B—H10A 110.7
C5B—C4B—C10B 111.96 (15) C4B—C10B—H10A 110.7
C9B—C4B—C10B 109.81 (16) C1B—C10B—H10B 110.7
C5B—C4B—C3B 111.08 (16) C4B—C10B—H10B 110.7
C9B—C4B—C3B 110.64 (15) H10A—C10B—H10B 108.8
C6A—C1A—C2A—O1A 179.69 (16) C4A—C5A—C6A—C1A −1.8 (3)
Cl1—C1A—C2A—O1A 0.0 (3) O1B—C1B—N2B—C3B 174.06 (18)
C6A—C1A—C2A—C3A −1.6 (3) C10B—C1B—N2B—C3B −5.0 (2)
Cl1—C1A—C2A—C3A 178.76 (13) C1B—N2B—C3B—C4B 14.0 (2)
O1A—C2A—C3A—O2A −0.8 (3) N2B—C3B—C4B—C5B −136.89 (16)
C1A—C2A—C3A—O2A −179.58 (18) N2B—C3B—C4B—C9B 101.19 (17)
O1A—C2A—C3A—C4A 179.11 (16) N2B—C3B—C4B—C10B −16.48 (19)
C1A—C2A—C3A—C4A 0.3 (3) C9B—C4B—C5B—C6B 55.7 (2)
O2A—C3A—C4A—C5A −179.95 (18) C10B—C4B—C5B—C6B 177.77 (17)
C2A—C3A—C4A—C5A 0.2 (3) C3B—C4B—C5B—C6B −66.9 (2)
O2A—C3A—C4A—Cl2 0.0 (3) C4B—C5B—C6B—C7B −57.1 (2)
C2A—C3A—C4A—Cl2 −179.94 (13) C5B—C6B—C7B—C8B 55.9 (2)
C3A—C4A—C5A—O3A −179.05 (16) C6B—C7B—C8B—C9B −54.4 (3)
Cl2—C4A—C5A—O3A 1.1 (3) C7B—C8B—C9B—C4B 54.4 (2)
C3A—C4A—C5A—C6A 0.6 (3) C5B—C4B—C9B—C8B −54.5 (2)
Cl2—C4A—C5A—C6A −179.28 (13) C10B—C4B—C9B—C8B −177.91 (16)
C2A—C1A—C6A—O4A −176.63 (18) C3B—C4B—C9B—C8B 68.3 (2)
Cl1—C1A—C6A—O4A 3.0 (3) O1B—C1B—C10B—C4B 174.58 (18)
C2A—C1A—C6A—C5A 2.3 (3) N2B—C1B—C10B—C4B −6.4 (2)
Cl1—C1A—C6A—C5A −178.02 (13) C5B—C4B—C10B—C1B 133.80 (17)
O3A—C5A—C6A—O4A −3.2 (3) C9B—C4B—C10B—C1B −104.25 (17)
C4A—C5A—C6A—O4A 177.16 (17) C3B—C4B—C10B—C1B 13.99 (19)
O3A—C5A—C6A—C1A 177.86 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O2Ai 0.84 1.97 2.7493 (19) 153
O1A—H1A···O2A 0.84 2.20 2.671 (2) 115
O3A—H3A···O1Bii 0.84 1.70 2.4807 (19) 153
O3A—H3A···O4A 0.84 2.26 2.7148 (19) 114
N2B—H2BA···O1Bii 0.88 2.07 2.913 (2) 161
N2B—H2BA···O4A 0.88 2.53 3.091 (2) 122

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2704).

References

  1. Al-Attas, A. S., Habeeb, M. M. & Al-Raimi, D. S. (2009). J. Mol. Struct.928, 158–170.
  2. Bowery, N. G. (1993). Annu. Rev. Pharmacol. Toxicol.33, 109–147. [DOI] [PubMed]
  3. Frisch, M. J., et al. (2004). GAUSSIAN03, Revision C01. Gaussian Inc., Wallingford, CT, USA.
  4. Gotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550–o553. [DOI] [PubMed]
  5. Hehre, W. J., Random, L., Schleyer, P. V. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory New York: Wiley.
  6. Henle, F., Leemhuis, J., Fischer, C., Bock, H. H., Lindemeyer, K., Feuerstein, T. J. & Meyer, D. K. (2006). J. Pharmacol. Exp. Ther.319, 181–191. [DOI] [PubMed]
  7. Ibers, J. A. (2001). Acta Cryst. C57, 641–643. [DOI] [PubMed]
  8. Ishida, H. (2004). Acta Cryst. E60, o1900–o1901.
  9. Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202–e204. [DOI] [PubMed]
  10. Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L., Mohana, K. N. & Narayana, B. (2009). J. Chem. Crystallogr.39, 777–780.
  11. Lagreze, W. A., Muller-Velten, R. & Feuerstein, T. J. (2001). Graefe’s Arch. Clin. Exp. Ophthalmol.239, 845–849. [DOI] [PubMed]
  12. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  13. Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053410/ng2704sup1.cif

e-66-0o163-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053410/ng2704Isup2.hkl

e-66-0o163-Isup2.hkl (153.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES