Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):m16–m17. doi: 10.1107/S1600536809051666

Poly[tetra­kis(μ-cyclo­hexa­ne-1,4-di­carboxyl­ato)di-μ-hydroxido-penta­zinc(II)]

Jin-Xi Chen a,*, Wei-Wei Meng a
PMCID: PMC2980201  PMID: 21579917

Abstract

In the title coordination polymer, [Zn53-OH)2(1,4-CDC)4]n (1,4-CDCH2 = 1,4-cyclo­hexa­nedicarboxylic acid) or [Zn5(C8H10O4)4(OH)2]n, the asymmetric unit comprises one half of an octa­hedrally coordinated ZnO6 complex unit (site symmetry Inline graphic) and two five-coordinate ZnO5 complex units, together with two μ3-bridging hydroxido ligands and four 1,4-CDC ligands (comprising two whole mol­ecules and four inversion-related half-molecules). The ZnO6 unit consists of four carboxyl­ate O donors (two bridging) and two hydroxido O donors (both bridging three Zn centres) [Zn—O range 2.065 (3)–2.125 (3) Å]. Each of the ZnO5 units [one capped tetra­hedral, the other square-pyrimidal; Zn—O range 1.928 (3)–2.338 (3) Å] has one hydroxido O donor and four carboxyl O donors from three different 1,4-CDC carboxyl­ate O donors (one bridging). Infinite (ZnO)n inorganic chains run parallel to the a axis and are interconnected by the organic ligands into a three-dimensional structure.

Related literature

For the structures of related complexes of 1,4-cyclo­hexa­nedicarboxylic acid, see: Liu, Huang et al. (2009); Liu, Zhu et al. (2009); Yang et al. (2007); Du et al. (2005).graphic file with name e-66-00m16-scheme1.jpg

Experimental

Crystal data

  • [Zn5(C8H10O4)4(OH)2]

  • M r = 1039.59

  • Triclinic, Inline graphic

  • a = 8.646 (3) Å

  • b = 10.665 (3) Å

  • c = 11.804 (3) Å

  • α = 113.915 (3)°

  • β = 96.307 (3)°

  • γ = 106.285 (3)°

  • V = 923.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • 3929 measured reflections

  • 3202 independent reflections

  • 2789 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.095

  • S = 1.04

  • 3202 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809051666/zs2020sup1.cif

e-66-00m16-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051666/zs2020Isup2.hkl

e-66-00m16-Isup2.hkl (157.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the start-up fund of Southeast University.

supplementary crystallographic information

Comment

In recent years, new coordination compounds formed from reaction of metals with cyclohexane-1,4-dicarboxylic acid [1,4-CDCH2] have attracted much attention (Liu, Huang et al., 2009; Liu, Zhu et al., 2009; Yang et al., 2007; Du et al., 2005). The structure of the title complex from the reaction of this acid with ZnII ion, [Zn53-OH)2(1,4-CDC)4]n (I) has been determined and the structure is reported here.

Compound (I) is a coordination polymer in which the repeating unit lies on a crystallographic inversion centre,the asymmetric unit comprising a half of an octahedraly coordinated Zn atom (Zn1) which lies on the centre, two five-coordinate Zn atoms in (Zn2 and Zn3), general sites, one µ3-hydroxido ligand (O1) and two cyclohexane-1,4-dicarboxylate ligands (Fig. 1). One of these 1,4-CDC ligands is complete (associated with donor atoms O6, O8, O3, O7) while the other 1,4-CDC ligand consists of two inversion-related halves (associated with O4, O5 and O2, O9). The ZnO6 coordination sphere about Zn1 consists of four carboxylate O donors (two bridging) and two hydroxido O donors (both bridging three Zn centres), [Zn—O bond length range, 2.065 (3)–2.125 (3) Å]. Both Zn2 and Zn3 are five coordinate, Zn2 having a capped tetrahedral stereochemistry, comprising one bridging hydroxyl O donor and four O donors from three different 1,4-CDC ligands (one bridging) [Zn–O bond length and O–Zn–O bond angle ranges, 1.928 (3)–2.338 (3) Å and 58.85 (11)–145.39 (12)° respectively]. The stereochemistry about Zn3 is tetragonal pyramidal with the four basal coordination sites occupied by O donor atoms from three different 1,4-CDC ligands (one bridging) [Zn—O range, 1.938 (3)–2.207 (3) Å], with the axial site occupied by the bridging hydroxido O donor [Zn–O1, 1.977 (3) Å]. The bond angle range is 86.00 (12)–125.97 (12)°. The repeat units form infinite (ZnO)n inorganic chains parallel to the a-axis which are interconnected by the organic ligands into a three-dimensional structure (Fig. 2).

Experimental

An aqueous mixture of cyclohexane-1,4-dicarboxylic acid (0.086 g, 0.5 mmol) and NaOH (0.040 g, 1 mmol) in 8 ml of water was stirred for half an hour. The pH was adjusted to ca. 7 with 1M HNO3 and (0.147 g, 0.5 mmol) of Zn(NO3)2 . 6H2O was added and the solution was stirred for half an hour. After adding 3 ml of cyclohexanol, the mixture was transferred into a 23 ml Teflon-lined autoclave and heated at 180° for 120 h. After cooling to room temperature, colorless single crystal blocks were obtained, which were washed with water.

Refinement

All H atoms were fixed geometrically and treated as riding, with C—H = 0.97 –0.98 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound (I), with displacement ellipsoids drawn at the 30% probability level. For symmetry codes: (A),-x+1,-y+1,-z+1; (B),-x,-y+1,-z+1; (C),-x,-y,-z; (D),-x,-y+2,-z+1; (E), -x,-y-1,-z+1;(F),-x+1,-y+1,-z; (G), x+1, y+1, z+1; (H), x, y,z+1.

Fig. 2.

Fig. 2.

The two-dimensional framework polymer structure of (I).

Crystal data

[Zn5(OH)2(C8H10O4)4] Z = 1
Mr = 1039.59 F(000) = 526
Triclinic, P1 Dx = 1.869 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.646 (3) Å Cell parameters from 30 reflections
b = 10.665 (3) Å θ = 3–25°
c = 11.804 (3) Å µ = 3.28 mm1
α = 113.915 (3)° T = 295 K
β = 96.307 (3)° Block, colorless
γ = 106.285 (3)° 0.20 × 0.20 × 0.20 mm
V = 923.6 (5) Å3

Data collection

Rigaku SCXmini diffractometer Rint = 0.019
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 2.0°
graphite h = −10→10
ω scans k = −12→9
3929 measured reflections l = −14→13
3202 independent reflections 3 standard reflections every 150 reflections
2789 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0488P)2 + 2.2254P] where P = (Fo2 + 2Fc2)/3
3202 reflections (Δ/σ)max < 0.001
250 parameters Δρmax = 1.11 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.5000 0.5000 0.01886 (17)
Zn2 0.23318 (6) 0.53614 (5) 0.33384 (4) 0.02004 (14)
Zn3 0.22931 (6) 0.63639 (5) 0.63471 (4) 0.02095 (15)
O1 0.2545 (3) 0.4858 (3) 0.4786 (2) 0.0165 (6)
O2 0.4649 (3) 0.5325 (3) 0.3351 (3) 0.0227 (6)
O3 −0.0494 (4) 0.3940 (3) 0.2794 (3) 0.0260 (7)
O4 0.0760 (4) 0.7048 (3) 0.5332 (3) 0.0292 (7)
O5 0.2146 (4) 0.7268 (3) 0.3889 (3) 0.0329 (8)
O6 0.4102 (4) 0.2695 (3) 0.3800 (3) 0.0333 (8)
O7 0.1035 (4) 0.4072 (4) 0.1489 (3) 0.0354 (8)
O8 0.5888 (4) 0.1755 (3) 0.2861 (3) 0.0367 (8)
O9 0.6515 (4) 0.4466 (4) 0.2502 (3) 0.0391 (9)
C1 −0.0356 (5) 0.3514 (5) 0.1658 (4) 0.0216 (9)
C2 0.4892 (6) 0.5179 (5) 0.1295 (4) 0.0244 (9)
H2 0.4089 0.5681 0.1453 0.029*
C3 0.5402 (5) 0.4959 (5) 0.2450 (4) 0.0210 (9)
C4 −0.1756 (5) 0.2307 (5) 0.0558 (4) 0.0239 (9)
H4 −0.2808 0.2294 0.0799 0.029*
C5 0.4451 (6) 0.1700 (5) 0.2982 (4) 0.0266 (10)
C6 0.3284 (6) −0.1108 (5) 0.1772 (4) 0.0340 (11)
H6A 0.3326 −0.1206 0.2556 0.041*
H6B 0.4337 −0.1087 0.1553 0.041*
C7 0.4060 (6) 0.3693 (5) 0.0104 (4) 0.0293 (10)
H7A 0.4817 0.3156 −0.0022 0.035*
H7B 0.3068 0.3126 0.0236 0.035*
C8 0.3027 (5) 0.0317 (5) 0.1984 (4) 0.0274 (10)
H8 0.1995 0.0306 0.2258 0.033*
C9 0.6414 (6) 0.6136 (5) 0.1087 (4) 0.0330 (11)
H9A 0.6883 0.7096 0.1827 0.040*
H9B 0.7258 0.5689 0.1000 0.040*
C10 −0.1861 (6) 0.2424 (5) −0.0691 (4) 0.0330 (11)
H10A −0.0815 0.2467 −0.0928 0.040*
H10B −0.2041 0.3323 −0.0568 0.040*
C11 0.1180 (6) 0.7593 (5) 0.4592 (4) 0.0281 (10)
C12 0.0494 (7) 0.8716 (6) 0.4494 (6) 0.0441 (13)
H12 0.0263 0.8499 0.3590 0.053*
C13 −0.1518 (7) 0.0883 (5) 0.0363 (5) 0.0425 (13)
H13A −0.1540 0.0779 0.1141 0.051*
H13B −0.0434 0.0922 0.0200 0.051*
C14 0.2867 (7) 0.0456 (5) 0.0755 (5) 0.0396 (12)
H14A 0.3928 0.0582 0.0533 0.047*
H14B 0.2606 0.1326 0.0894 0.047*
C15 0.1774 (7) 1.0209 (7) 0.5214 (7) 0.0554 (16)
H15A 0.2750 1.0237 0.4876 0.066*
H15B 0.2105 1.0432 0.6107 0.066*
C16 −0.1133 (7) 0.8624 (6) 0.4875 (7) 0.0518 (15)
H16A −0.0976 0.8752 0.5746 0.062*
H16B −0.1962 0.7657 0.4319 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0198 (3) 0.0240 (4) 0.0140 (3) 0.0118 (3) 0.0024 (3) 0.0077 (3)
Zn2 0.0223 (3) 0.0226 (3) 0.0165 (3) 0.0107 (2) 0.00190 (19) 0.0092 (2)
Zn3 0.0198 (3) 0.0234 (3) 0.0170 (3) 0.0083 (2) 0.00536 (19) 0.0062 (2)
O1 0.0185 (13) 0.0181 (14) 0.0134 (13) 0.0092 (11) 0.0029 (11) 0.0062 (11)
O2 0.0255 (15) 0.0346 (17) 0.0163 (14) 0.0167 (13) 0.0072 (12) 0.0150 (13)
O3 0.0235 (15) 0.0329 (17) 0.0157 (15) 0.0074 (13) 0.0038 (12) 0.0077 (13)
O4 0.0330 (17) 0.0306 (17) 0.0320 (18) 0.0168 (14) 0.0109 (14) 0.0175 (15)
O5 0.0436 (19) 0.0259 (17) 0.045 (2) 0.0222 (15) 0.0220 (16) 0.0213 (15)
O6 0.0372 (19) 0.0199 (16) 0.0304 (18) 0.0063 (14) 0.0105 (15) 0.0020 (14)
O7 0.0249 (17) 0.046 (2) 0.0211 (17) 0.0037 (15) 0.0056 (13) 0.0077 (15)
O8 0.0246 (17) 0.0229 (17) 0.045 (2) 0.0037 (13) 0.0040 (15) 0.0030 (15)
O9 0.051 (2) 0.069 (2) 0.0274 (18) 0.046 (2) 0.0192 (16) 0.0314 (18)
C1 0.019 (2) 0.027 (2) 0.020 (2) 0.0133 (18) 0.0068 (17) 0.0076 (18)
C2 0.036 (2) 0.035 (3) 0.020 (2) 0.024 (2) 0.0138 (19) 0.020 (2)
C3 0.023 (2) 0.029 (2) 0.015 (2) 0.0126 (18) 0.0066 (16) 0.0118 (18)
C4 0.021 (2) 0.026 (2) 0.021 (2) 0.0091 (18) 0.0035 (17) 0.0071 (18)
C5 0.027 (2) 0.025 (2) 0.024 (2) 0.0082 (19) 0.0048 (18) 0.009 (2)
C6 0.047 (3) 0.026 (2) 0.017 (2) 0.005 (2) −0.004 (2) 0.006 (2)
C7 0.033 (2) 0.032 (3) 0.028 (2) 0.011 (2) 0.0070 (19) 0.018 (2)
C8 0.023 (2) 0.023 (2) 0.025 (2) 0.0057 (18) 0.0033 (18) 0.0029 (19)
C9 0.036 (3) 0.037 (3) 0.024 (2) 0.009 (2) 0.002 (2) 0.017 (2)
C10 0.046 (3) 0.020 (2) 0.020 (2) 0.006 (2) −0.002 (2) 0.0038 (19)
C11 0.030 (2) 0.024 (2) 0.033 (3) 0.0117 (19) 0.010 (2) 0.014 (2)
C12 0.062 (4) 0.038 (3) 0.059 (4) 0.033 (3) 0.034 (3) 0.032 (3)
C13 0.047 (3) 0.031 (3) 0.038 (3) 0.006 (2) −0.011 (2) 0.016 (2)
C14 0.043 (3) 0.020 (2) 0.040 (3) −0.001 (2) −0.009 (2) 0.012 (2)
C15 0.042 (3) 0.056 (4) 0.084 (5) 0.029 (3) 0.019 (3) 0.038 (4)
C16 0.044 (3) 0.039 (3) 0.080 (4) 0.018 (3) 0.017 (3) 0.032 (3)

Geometric parameters (Å, °)

Zn1—O1 2.065 (3) C5—C8 1.528 (6)
Zn1—O1i 2.065 (3) C6—C8 1.521 (6)
Zn1—O2i 2.116 (3) C6—C10iii 1.532 (6)
Zn1—O2 2.116 (3) C6—H6A 0.9700
Zn1—O6 2.125 (3) C6—H6B 0.9700
Zn1—O6i 2.125 (3) C7—C9iv 1.517 (6)
Zn2—O5 1.928 (3) C7—H7A 0.9700
Zn2—O1 1.993 (3) C7—H7B 0.9700
Zn2—O2 2.013 (3) C8—C14 1.513 (7)
Zn2—O7 2.019 (3) C8—H8 0.9800
Zn2—O3 2.338 (3) C9—C7iv 1.517 (6)
Zn3—O8i 1.939 (3) C9—H9A 0.9700
Zn3—O3ii 1.971 (3) C9—H9B 0.9700
Zn3—O1 1.977 (3) C10—C6iii 1.532 (6)
Zn3—O4 2.151 (3) C10—H10A 0.9700
Zn3—O9i 2.207 (3) C10—H10B 0.9700
O2—C3 1.290 (5) C11—C12 1.516 (6)
O3—C1 1.261 (5) C12—C15 1.480 (8)
O4—C11 1.263 (5) C12—C16 1.513 (8)
O5—C11 1.260 (5) C12—H12 0.9800
O6—C5 1.250 (5) C13—C14iii 1.530 (6)
O7—C1 1.261 (5) C13—H13A 0.9700
O8—C5 1.254 (5) C13—H13B 0.9700
O9—C3 1.226 (5) C14—C13iii 1.530 (6)
C1—C4 1.495 (6) C14—H14A 0.9700
C2—C3 1.514 (5) C14—H14B 0.9700
C2—C7 1.529 (6) C15—C16v 1.532 (7)
C2—C9 1.535 (6) C15—H15A 0.9700
C2—H2 0.9800 C15—H15B 0.9700
C4—C13 1.518 (6) C16—C15v 1.532 (7)
C4—C10 1.524 (6) C16—H16A 0.9700
C4—H4 0.9800 C16—H16B 0.9700
O1—Zn1—O2 80.38 (10) O8—C5—C8 115.7 (4)
O1—Zn1—O6 87.49 (11) C8—C6—C10iii 110.4 (4)
O2—Zn1—O6 89.32 (12) C8—C6—H6A 109.6
O1—Zn1—O6i 92.51 (11) C10iii—C6—H6A 109.6
O2—Zn1—O6i 90.68 (12) C8—C6—H6B 109.6
O6—Zn1—O6i 180.00 (12) C10iii—C6—H6B 109.6
O1—Zn1—Zn2i 140.05 (7) H6A—C6—H6B 108.1
O2—Zn1—Zn2i 139.33 (8) C9iv—C7—C2 111.9 (4)
O6—Zn1—Zn2i 88.74 (9) C9iv—C7—H7A 109.2
O5—Zn2—O1 111.19 (13) C2—C7—H7A 109.2
O5—Zn2—O2 115.65 (13) C9iv—C7—H7B 109.2
O1—Zn2—O2 84.68 (11) C2—C7—H7B 109.2
O5—Zn2—O7 108.81 (15) H7A—C7—H7B 107.9
O1—Zn2—O7 129.58 (13) C14—C8—C6 110.5 (4)
O2—Zn2—O7 104.36 (12) C14—C8—C5 106.2 (4)
O5—Zn2—O3 98.81 (13) C6—C8—C5 114.1 (4)
O1—Zn2—O3 85.57 (11) C14—C8—H8 108.6
O2—Zn2—O3 145.41 (12) C6—C8—H8 108.6
O7—Zn2—O3 58.86 (11) C5—C8—H8 108.6
O8i—Zn3—O3ii 118.92 (13) C7iv—C9—C2 111.0 (4)
O8i—Zn3—O1 114.91 (13) C7iv—C9—H9A 109.4
O3ii—Zn3—O1 125.97 (12) C2—C9—H9A 109.4
O8i—Zn3—O4 93.78 (14) C7iv—C9—H9B 109.4
O3ii—Zn3—O4 86.00 (12) C2—C9—H9B 109.4
O1—Zn3—O4 94.98 (11) H9A—C9—H9B 108.0
O8i—Zn3—O9i 92.49 (15) C4—C10—C6iii 111.1 (4)
O3ii—Zn3—O9i 84.37 (13) C4—C10—H10A 109.4
O1—Zn3—O9i 89.19 (12) C6iii—C10—H10A 109.4
O4—Zn3—O9i 170.20 (13) C4—C10—H10B 109.4
Zn3—O1—Zn2 111.16 (13) C6iii—C10—H10B 109.4
Zn3—O1—Zn1 110.07 (12) H10A—C10—H10B 108.0
Zn2—O1—Zn1 98.36 (11) O5—C11—O4 124.9 (4)
C3—O2—Zn2 132.3 (3) O5—C11—C12 115.1 (4)
C3—O2—Zn1 125.5 (3) O4—C11—C12 120.0 (4)
Zn2—O2—Zn1 96.09 (11) C15—C12—C16 112.4 (5)
C1—O3—Zn3ii 137.0 (3) C15—C12—C11 110.3 (5)
C1—O3—Zn2 84.3 (2) C16—C12—C11 113.4 (4)
Zn3ii—O3—Zn2 138.63 (14) C15—C12—H12 106.8
C11—O4—Zn3 125.9 (3) C16—C12—H12 106.8
C11—O5—Zn2 118.8 (3) C11—C12—H12 106.8
C5—O6—Zn1 142.7 (3) C4—C13—C14iii 112.1 (4)
C1—O7—Zn2 99.0 (3) C4—C13—H13A 109.2
C5—O8—Zn3i 119.7 (3) C14iii—C13—H13A 109.2
C3—O9—Zn3i 140.7 (3) C4—C13—H13B 109.2
O7—C1—O3 117.8 (4) C14iii—C13—H13B 109.2
O7—C1—C4 121.1 (4) H13A—C13—H13B 107.9
O3—C1—C4 121.0 (4) C8—C14—C13iii 112.6 (4)
C3—C2—C7 110.1 (3) C8—C14—H14A 109.1
C3—C2—C9 110.3 (4) C13iii—C14—H14A 109.1
C7—C2—C9 110.4 (4) C8—C14—H14B 109.1
C3—C2—H2 108.6 C13iii—C14—H14B 109.1
C7—C2—H2 108.6 H14A—C14—H14B 107.8
C9—C2—H2 108.6 C12—C15—C16v 111.8 (5)
O9—C3—O2 122.9 (4) C12—C15—H15A 109.2
O9—C3—C2 119.3 (4) C16v—C15—H15A 109.2
O2—C3—C2 117.8 (4) C12—C15—H15B 109.2
C1—C4—C13 106.4 (4) C16v—C15—H15B 109.2
C1—C4—C10 115.0 (4) H15A—C15—H15B 107.9
C13—C4—C10 109.7 (4) C12—C16—C15v 112.0 (5)
C1—C4—H4 108.5 C12—C16—H16A 109.2
C13—C4—H4 108.5 C15v—C16—H16A 109.2
C10—C4—H4 108.5 C12—C16—H16B 109.2
O6—C5—O8 125.7 (4) C15v—C16—H16B 109.2
O6—C5—C8 118.6 (4) H16A—C16—H16B 107.9

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y, −z; (iv) −x+1, −y+1, −z; (v) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2020).

References

  1. Du, M., Cai, H. & Zhao, X.-J. (2005). Inorg. Chim. Acta, 358, 4034–4038.
  2. Liu, G.-X., Huang, L.-F., Kong, X.-J., Huang, R.-Y. & Xu, H. (2009). Inorg. Chim. Acta, 362, 1755–1760.
  3. Liu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605–1610.
  4. Rigaku (2005). CrystalStructure Rigaku Americas Corporation, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst. Growth Des.7, 2009–2015.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809051666/zs2020sup1.cif

e-66-00m16-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051666/zs2020Isup2.hkl

e-66-00m16-Isup2.hkl (157.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES