Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):m4. doi: 10.1107/S1600536809051587

catena-Poly[[trimethyltin(IV)]-μ-2-methylbenzoato-κ2 O:O′]

Muhammad Danish a,*, Iram Saleem a, Nazir Ahmad a, Wojciech Starosta b, Janusz Leciejewicz b
PMCID: PMC2980210  PMID: 21579938

Abstract

The polymeric structure of the title compound, [Sn(CH3)3(C8H7O2)]n, is composed of zigzag chains in which the tin(IV) atoms, coordinated by three methyl groups, are bridged by toluene-2-carboxyl­ate ligands via their O atoms. A slightly distorted trigonal-bipyramidal SnC3O2 coordination geometry arises for the metal, with the O atoms in the axial sites. Weak C—H⋯O hydrogen bonds help to stabilize the packing.

Related literature

For biological activity of tin complexes with carboxyl­ate ligands, see, for example: Shahzadi et al. (2007). For a related structure, see: Danish et al. (2009). For a review of the structural chemistry of tin(IV) complexes with carboxyl­ate ligands, see: Tiekink (1991). graphic file with name e-66-000m4-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)3(C8H7O2)]

  • M r = 298.93

  • Monoclinic, Inline graphic

  • a = 10.618 (2) Å

  • b = 10.046 (2) Å

  • c = 12.833 (3) Å

  • β = 112.39 (3)°

  • V = 1265.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 K

  • 0.42 × 0.12 × 0.09 mm

Data collection

  • Kuma KM-4 four circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.838, T max = 0.892

  • 3389 measured reflections

  • 3226 independent reflections

  • 2090 reflections with I > 2σ(I)

  • R int = 0.022

  • 3 standard reflections every 200 reflections

  • intensity decay: 6.4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.118

  • S = 1.04

  • 3226 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.69 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051587/hb5258sup1.cif

e-66-000m4-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051587/hb5258Isup2.hkl

e-66-000m4-Isup2.hkl (158.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—C11 2.108 (6)
Sn1—C12 2.112 (5)
Sn1—C13 2.116 (5)
Sn1—O2i 2.200 (3)
Sn1—O1 2.413 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯O1i 0.96 2.66 3.271 (7) 122
C4—H4⋯O2ii 0.93 2.74 3.502 (6) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The structure of the title compound (I) is built of zigzag molecular chains in which trimethyl-tin units are bridged by toluene-3-carboxylate ligand molecules via both their carboxylate O atoms (Fig.1). The toluene ring is planar [r.m.s. 0.0068 (2) Å]. The carboxylic group makes with it a dihedral angle of 77.8 (2)°. A catenated molecular pattern is formed as shown in Fig. 2. Three methyl groups and the tin ion are coplanar [r.m.s. 0.0459 (2) Å]. The metal ion is shifted from the plane by 0.0918 (2) Å. Methyl C atoms form an equatorial plane of a trigonal bipyramid with the bridging carboxylate O atoms at the apices above and below this plane. The chains are kept together by weak hydrogen bonds in which methyl C atoms act as donors and the carboxylate O atoms in the adjacent chains -as acceptors. Weak intra-chain hydrogen bonds are also observed. Geometrical parameters of hydrogen bonds are listed in Table 1.

Experimental

0.01 mol of sodium ortho-toluate was suspended in 25 ml of dry chloroform contained in a round-bottom flask under argon; 0.01 mol of trimethyl-tin chloride was then added with constant stirring. The reacting mixtured was refluxed for 4 h under argon, cooled to room temperature and kept in an ice bath for 1 h. Sodium chloride formed during the reaction was removed by filtration. The filtrate was warmed with activated charcoal for 5 minutes, filtered through silica gel and concentrated to 10 ml. Crude crystals appeared in three days. Then, they were recrystalized from 3:1 chloroform/acetone mixture to yield colourless blocks of (I).

Refinement

The H atoms attached to toluene-ring C atoms and methyl C atoms were positioned geometrically and refined with a riding model.

Figures

Fig. 1.

Fig. 1.

A structural unit of (1) with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the structure.

Crystal data

[Sn(CH3)3(C8H7O2)] F(000) = 592
Mr = 298.93 Dx = 1.569 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 10.618 (2) Å θ = 6–15°
b = 10.046 (2) Å µ = 2.00 mm1
c = 12.833 (3) Å T = 293 K
β = 112.39 (3)° Block, colourless
V = 1265.7 (4) Å3 0.42 × 0.12 × 0.09 mm
Z = 4

Data collection

Kuma KM-4 four circle diffractometer 2090 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
graphite θmax = 30.1°, θmin = 2.1°
profile data from ω/2θ scans h = 0→13
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = −13→0
Tmin = 0.838, Tmax = 0.892 l = −17→15
3389 measured reflections 3 standard reflections every 200 reflections
3226 independent reflections intensity decay: 6.4%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.0604P] where P = (Fo2 + 2Fc2)/3
3226 reflections (Δ/σ)max = 0.001
131 parameters Δρmax = 1.37 e Å3
0 restraints Δρmin = −1.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.67213 (3) 0.58902 (3) 0.23186 (2) 0.04378 (12)
O1 0.8105 (3) 0.7804 (3) 0.2342 (4) 0.0645 (9)
C1 1.0203 (4) 0.7136 (4) 0.2204 (4) 0.0443 (8)
C7 0.9255 (4) 0.8130 (4) 0.2391 (3) 0.0429 (8)
C4 1.1974 (6) 0.5271 (6) 0.1924 (6) 0.0803 (17)
H4 1.2582 0.4665 0.1826 0.096*
C6 1.0906 (6) 0.6253 (6) 0.3062 (5) 0.0651 (13)
H6 1.0792 0.6290 0.3745 0.078*
C5 1.1780 (6) 0.5310 (7) 0.2904 (6) 0.0803 (17)
H5 1.2230 0.4707 0.3475 0.096*
C2 1.0385 (5) 0.7088 (5) 0.1204 (4) 0.0632 (12)
C3 1.1262 (7) 0.6142 (7) 0.1067 (6) 0.0825 (19)
H3 1.1374 0.6092 0.0383 0.099*
C8 0.9607 (9) 0.8037 (9) 0.0242 (6) 0.110 (3)
H8A 0.8646 0.7885 0.0011 0.165*
H8B 0.9873 0.7881 −0.0384 0.165*
H8C 0.9813 0.8940 0.0494 0.165*
O2 0.9682 (3) 0.9314 (3) 0.2610 (3) 0.0527 (7)
C12 0.5145 (5) 0.7309 (5) 0.1961 (6) 0.0780 (17)
H12A 0.5492 0.8098 0.2399 0.117*
H12B 0.4420 0.6947 0.2147 0.117*
H12C 0.4804 0.7529 0.1173 0.117*
C13 0.7115 (6) 0.5114 (6) 0.0940 (4) 0.0725 (15)
H13A 0.8034 0.5321 0.1031 0.109*
H13B 0.6495 0.5504 0.0253 0.109*
H13C 0.6994 0.4166 0.0909 0.109*
C11 0.7997 (7) 0.5631 (6) 0.4027 (5) 0.0814 (18)
H11A 0.8469 0.6448 0.4318 0.122*
H11B 0.8646 0.4940 0.4090 0.122*
H11C 0.7456 0.5388 0.4450 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.04404 (18) 0.03127 (16) 0.05657 (19) 0.00215 (11) 0.01979 (13) −0.00013 (11)
O1 0.0526 (18) 0.0341 (15) 0.118 (3) −0.0025 (13) 0.0456 (18) −0.0094 (17)
C1 0.0366 (18) 0.0333 (18) 0.063 (2) −0.0039 (15) 0.0193 (17) −0.0053 (16)
C7 0.045 (2) 0.0317 (18) 0.053 (2) 0.0008 (15) 0.0201 (17) −0.0006 (16)
C4 0.057 (3) 0.063 (4) 0.122 (5) 0.017 (3) 0.036 (3) −0.016 (3)
C6 0.061 (3) 0.059 (3) 0.072 (3) 0.018 (2) 0.022 (2) 0.006 (2)
C5 0.063 (3) 0.062 (4) 0.108 (5) 0.024 (3) 0.024 (3) 0.009 (3)
C2 0.066 (3) 0.059 (3) 0.073 (3) 0.012 (2) 0.036 (3) 0.006 (2)
C3 0.079 (4) 0.088 (4) 0.100 (5) 0.011 (3) 0.056 (4) −0.015 (4)
C8 0.146 (7) 0.121 (6) 0.083 (4) 0.050 (5) 0.067 (4) 0.033 (4)
O2 0.0473 (17) 0.0323 (15) 0.082 (2) −0.0026 (11) 0.0282 (16) −0.0035 (13)
C12 0.055 (3) 0.043 (2) 0.135 (5) 0.003 (2) 0.034 (3) 0.017 (3)
C13 0.099 (4) 0.063 (3) 0.067 (3) −0.021 (3) 0.044 (3) −0.015 (3)
C11 0.084 (4) 0.087 (4) 0.055 (3) −0.026 (3) 0.006 (3) 0.001 (3)

Geometric parameters (Å, °)

Sn1—C11 2.108 (6) C2—C3 1.388 (7)
Sn1—C12 2.112 (5) C2—C8 1.530 (8)
Sn1—C13 2.116 (5) C3—H3 0.9300
Sn1—O2i 2.200 (3) C8—H8A 0.9600
Sn1—O1 2.413 (3) C8—H8B 0.9600
O1—C7 1.243 (5) C8—H8C 0.9600
C1—C2 1.370 (7) O2—Sn1ii 2.200 (3)
C1—C6 1.389 (7) C12—H12A 0.9600
C1—C7 1.500 (5) C12—H12B 0.9600
C7—O2 1.266 (5) C12—H12C 0.9600
C4—C5 1.351 (10) C13—H13A 0.9600
C4—C3 1.383 (10) C13—H13B 0.9600
C4—H4 0.9300 C13—H13C 0.9600
C6—C5 1.394 (8) C11—H11A 0.9600
C6—H6 0.9300 C11—H11B 0.9600
C5—H5 0.9300 C11—H11C 0.9600
C11—Sn1—C12 116.8 (3) C4—C3—C2 121.5 (6)
C11—Sn1—C13 124.8 (3) C4—C3—H3 119.3
C12—Sn1—C13 117.3 (3) C2—C3—H3 119.3
C11—Sn1—O2i 92.6 (2) C2—C8—H8A 109.5
C12—Sn1—O2i 90.09 (17) C2—C8—H8B 109.5
C13—Sn1—O2i 97.02 (17) H8A—C8—H8B 109.5
C11—Sn1—O1 86.5 (2) C2—C8—H8C 109.5
C12—Sn1—O1 83.88 (17) H8A—C8—H8C 109.5
C13—Sn1—O1 89.46 (17) H8B—C8—H8C 109.5
O2i—Sn1—O1 172.68 (11) C7—O2—Sn1ii 119.7 (3)
C7—O1—Sn1 142.4 (3) Sn1—C12—H12A 109.5
C2—C1—C6 119.6 (4) Sn1—C12—H12B 109.5
C2—C1—C7 121.0 (4) H12A—C12—H12B 109.5
C6—C1—C7 119.3 (4) Sn1—C12—H12C 109.5
O1—C7—O2 121.4 (4) H12A—C12—H12C 109.5
O1—C7—C1 121.5 (3) H12B—C12—H12C 109.5
O2—C7—C1 117.1 (4) Sn1—C13—H13A 109.5
C5—C4—C3 119.4 (5) Sn1—C13—H13B 109.5
C5—C4—H4 120.3 H13A—C13—H13B 109.5
C3—C4—H4 120.3 Sn1—C13—H13C 109.5
C1—C6—C5 120.4 (6) H13A—C13—H13C 109.5
C1—C6—H6 119.8 H13B—C13—H13C 109.5
C5—C6—H6 119.8 Sn1—C11—H11A 109.5
C4—C5—C6 120.1 (6) Sn1—C11—H11B 109.5
C4—C5—H5 120.0 H11A—C11—H11B 109.5
C6—C5—H5 120.0 Sn1—C11—H11C 109.5
C1—C2—C3 119.0 (5) H11A—C11—H11C 109.5
C1—C2—C8 120.6 (5) H11B—C11—H11C 109.5
C3—C2—C8 120.4 (6)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13C···O1i 0.96 2.66 3.271 (7) 122
C4—H4···O2iii 0.93 2.74 3.502 (6) 140

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (iii) −x+5/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5258).

References

  1. Danish, M., Tahir, M. N., Ahmad, N., Raza, A. R. & Ibrahim, M. (2009). Acta Cryst. E65, m609–m610. [DOI] [PMC free article] [PubMed]
  2. Kuma (1996). KM-4 Software Kuma Diffraction Ltd. Wrocław, Poland.
  3. Kuma (2001). DATAPROC Kuma Diffraction Ltd. Wrocław, Poland.
  4. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England
  5. Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem.33, 403–411.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051587/hb5258sup1.cif

e-66-000m4-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051587/hb5258Isup2.hkl

e-66-000m4-Isup2.hkl (158.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES