Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):o98. doi: 10.1107/S1600536809052428

Bis(propan-2-yl) [(2S,3S)-2-hydr­oxy-3-nitro­butan-2-yl]phospho­nate

Tanmay Mandal a, Sampak Samanta a, Grant A Broker a, Cong-Gui Zhao a,, Edward R T Tiekink b,*
PMCID: PMC2980212  PMID: 21580193

Abstract

In the title compound, C10H22NO6P, a staggered conformation is found when the mol­ecule is viewed down the central P—C bond, with the oxo and hydr­oxy groups gauche to each other. The crystal structure features supra­molecular chains of helical topology propagating along the b axis, mediated by O—H⋯O hydrogen bonds.

Related literature

For background to the enanti­oselective nitro­aldol reaction of α-ketophospho­nates and nitro­methane and for the synthesis, see: Mandal et al. (2007).graphic file with name e-66-00o98-scheme1.jpg

Experimental

Crystal data

  • C10H22NO6P

  • M r = 283.26

  • Orthorhombic, Inline graphic

  • a = 7.8620 (16) Å

  • b = 11.369 (2) Å

  • c = 16.920 (3) Å

  • V = 1512.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.32 × 0.10 × 0.05 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.884, T max = 1

  • 13441 measured reflections

  • 3072 independent reflections

  • 3020 reflections with I > 2σ(I)

  • R int = 0.089

  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.105

  • S = 1.07

  • 3072 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 1272 Friedel pairs

  • Flack parameter: 0.05 (11)

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052428/hb5269sup1.cif

e-66-00o98-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052428/hb5269Isup2.hkl

e-66-00o98-Isup2.hkl (150.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯O1i 0.84 1.90 2.7289 (19) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

CGZ thanks the Welch Foundation (grant No. AX-1593) and the NIH-MBRS program (S06 GM08194) for support.

supplementary crystallographic information

Comment

The title compound, (I), was investigated as a part of previous studies on the enantioselective nitroaldol reaction of α-ketophosphonates and nitromethane for the synthesis of optically active α-hydroxy-β-nitrophosphonates (Mandal et al., 2007). The crystal structure analysis of (I), Fig. 1, shows a staggered conformation when the molecule is viewed down the P–C7 axis in which the oxo and hydroxy groups are gauche to each other. The presence of O–H···O hydrogen bonding formed between the hydroxy-O4—H and O═P atoms leads to the formation of supramolecular chains along the b axis, Fig. 2 and Table 1.

Experimental

The title compound was prepared as described in the literature (Mandal et al., 2007).

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The methyl H-atoms were rotated to fit the electron density. The O–H H atom was located from a difference map and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

Supramolecular chain along the b axis in (I) mediated by O–H···O (orange dashed lines) hydrogen bonding. Colour scheme: P, olive; O, red; N, blue; C, grey; and H, green.

Crystal data

C10H22NO6P F(000) = 608
Mr = 283.26 Dx = 1.244 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2308 reflections
a = 7.8620 (16) Å θ = 4.0–30.1°
b = 11.369 (2) Å µ = 0.20 mm1
c = 16.920 (3) Å T = 173 K
V = 1512.4 (5) Å3 Block, pale-yellow
Z = 4 0.32 × 0.10 × 0.05 mm

Data collection

Rigaku AFC12K/SATURN724 diffractometer 3072 independent reflections
Radiation source: fine-focus sealed tube 3020 reflections with I > 2σ(I)
graphite Rint = 0.089
ω scans θmax = 26.5°, θmin = 4.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→8
Tmin = 0.884, Tmax = 1 k = −13→14
13441 measured reflections l = −21→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2822P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3072 reflections Δρmax = 0.19 e Å3
166 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 1272 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.63065 (6) 0.29509 (4) 0.74005 (3) 0.03236 (14)
O1 0.51586 (18) 0.19464 (11) 0.75316 (9) 0.0416 (3)
O2 0.80539 (18) 0.26553 (13) 0.70112 (9) 0.0415 (3)
O3 0.67933 (17) 0.36408 (13) 0.81677 (8) 0.0383 (3)
O4 0.41385 (17) 0.46364 (12) 0.71762 (9) 0.0400 (3)
H4O 0.4448 0.5337 0.7241 0.060*
O5 0.3878 (4) 0.49342 (19) 0.51776 (13) 0.0848 (7)
O6 0.1751 (3) 0.4227 (2) 0.58457 (14) 0.0861 (7)
N1 0.3262 (3) 0.4256 (2) 0.56573 (14) 0.0608 (6)
C1 0.9313 (3) 0.18894 (18) 0.74033 (13) 0.0438 (5)
H1 0.8736 0.1412 0.7821 0.053*
C2 0.9985 (4) 0.1089 (3) 0.67718 (17) 0.0706 (8)
H2A 0.9051 0.0617 0.6556 0.106*
H2B 1.0849 0.0567 0.6998 0.106*
H2C 1.0495 0.1560 0.6348 0.106*
C3 1.0653 (3) 0.2668 (2) 0.7782 (2) 0.0656 (8)
H3A 1.0121 0.3162 0.8187 0.098*
H3B 1.1173 0.3168 0.7377 0.098*
H3C 1.1530 0.2175 0.8026 0.098*
C4 0.5800 (3) 0.3614 (2) 0.89018 (13) 0.0551 (6)
H4 0.4659 0.3254 0.8803 0.066*
C5 0.5601 (6) 0.4848 (3) 0.91703 (18) 0.0879 (11)
H5A 0.4970 0.5295 0.8771 0.132*
H5B 0.6726 0.5202 0.9246 0.132*
H5C 0.4976 0.4862 0.9671 0.132*
C6 0.6764 (7) 0.2898 (3) 0.94900 (18) 0.1056 (15)
H6A 0.6874 0.2089 0.9296 0.158*
H6B 0.6152 0.2896 0.9995 0.158*
H6C 0.7897 0.3238 0.9565 0.158*
C7 0.5409 (2) 0.40550 (16) 0.67209 (11) 0.0336 (4)
C8 0.4436 (3) 0.33911 (18) 0.60636 (12) 0.0419 (5)
H8 0.3722 0.2770 0.6318 0.050*
C9 0.5556 (4) 0.2804 (2) 0.54440 (13) 0.0558 (6)
H9A 0.4838 0.2406 0.5053 0.084*
H9B 0.6299 0.2227 0.5700 0.084*
H9C 0.6251 0.3401 0.5179 0.084*
C10 0.6767 (3) 0.49079 (18) 0.64308 (14) 0.0430 (5)
H10A 0.7312 0.5287 0.6885 0.065*
H10B 0.6239 0.5509 0.6095 0.065*
H10C 0.7623 0.4477 0.6125 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0303 (2) 0.0284 (2) 0.0384 (2) 0.00159 (18) 0.00078 (17) 0.00062 (19)
O1 0.0432 (7) 0.0284 (6) 0.0532 (8) −0.0023 (5) −0.0002 (6) 0.0044 (7)
O2 0.0357 (7) 0.0454 (8) 0.0435 (7) 0.0140 (6) 0.0051 (6) 0.0031 (6)
O3 0.0365 (7) 0.0426 (7) 0.0359 (7) −0.0048 (6) 0.0024 (5) −0.0017 (6)
O4 0.0342 (7) 0.0316 (7) 0.0541 (8) 0.0031 (6) 0.0021 (6) −0.0080 (6)
O5 0.1205 (19) 0.0631 (12) 0.0708 (13) 0.0063 (14) −0.0288 (14) 0.0171 (10)
O6 0.0593 (13) 0.1078 (17) 0.0912 (16) 0.0212 (13) −0.0342 (12) −0.0093 (14)
N1 0.0736 (16) 0.0513 (12) 0.0576 (12) 0.0103 (11) −0.0261 (11) −0.0073 (11)
C1 0.0408 (10) 0.0399 (11) 0.0507 (11) 0.0124 (8) −0.0022 (9) 0.0007 (10)
C2 0.0768 (19) 0.0698 (17) 0.0650 (16) 0.0410 (16) −0.0121 (14) −0.0150 (14)
C3 0.0423 (12) 0.0584 (15) 0.096 (2) 0.0113 (11) −0.0130 (13) −0.0103 (14)
C4 0.0576 (14) 0.0725 (16) 0.0351 (10) −0.0157 (12) 0.0104 (9) −0.0010 (10)
C5 0.128 (3) 0.085 (2) 0.0507 (15) 0.038 (2) 0.0216 (17) −0.0070 (15)
C6 0.189 (5) 0.081 (2) 0.0471 (15) 0.029 (3) 0.004 (2) 0.0180 (16)
C7 0.0344 (9) 0.0283 (8) 0.0383 (9) 0.0022 (7) −0.0010 (8) −0.0021 (8)
C8 0.0498 (12) 0.0332 (9) 0.0428 (10) 0.0031 (9) −0.0088 (9) −0.0032 (9)
C9 0.0772 (17) 0.0502 (13) 0.0399 (11) 0.0049 (13) 0.0000 (11) −0.0097 (10)
C10 0.0451 (11) 0.0334 (10) 0.0506 (12) −0.0024 (9) 0.0042 (9) 0.0032 (9)

Geometric parameters (Å, °)

P1—O1 1.4723 (14) C4—C5 1.483 (4)
P1—O2 1.5602 (14) C4—C6 1.492 (4)
P1—O3 1.5643 (15) C4—H4 1.0000
P1—C7 1.8428 (19) C5—H5A 0.9800
O2—C1 1.476 (2) C5—H5B 0.9800
O3—C4 1.467 (2) C5—H5C 0.9800
O4—C7 1.424 (2) C6—H6A 0.9800
O4—H4O 0.8400 C6—H6B 0.9800
O5—N1 1.219 (3) C6—H6C 0.9800
O6—N1 1.230 (4) C7—C10 1.524 (3)
N1—C8 1.514 (3) C7—C8 1.546 (3)
C1—C2 1.500 (3) C8—C9 1.523 (3)
C1—C3 1.517 (3) C8—H8 1.0000
C1—H1 1.0000 C9—H9A 0.9800
C2—H2A 0.9800 C9—H9B 0.9800
C2—H2B 0.9800 C9—H9C 0.9800
C2—H2C 0.9800 C10—H10A 0.9800
C3—H3A 0.9800 C10—H10B 0.9800
C3—H3B 0.9800 C10—H10C 0.9800
C3—H3C 0.9800
O1—P1—O2 115.86 (9) C4—C5—H5A 109.5
O1—P1—O3 114.44 (9) C4—C5—H5B 109.5
O2—P1—O3 104.06 (8) H5A—C5—H5B 109.5
O1—P1—C7 112.80 (9) C4—C5—H5C 109.5
O2—P1—C7 102.75 (8) H5A—C5—H5C 109.5
O3—P1—C7 105.67 (8) H5B—C5—H5C 109.5
C1—O2—P1 121.86 (13) C4—C6—H6A 109.5
C4—O3—P1 124.17 (14) C4—C6—H6B 109.5
C7—O4—H4O 108.0 H6A—C6—H6B 109.5
O5—N1—O6 124.9 (3) C4—C6—H6C 109.5
O5—N1—C8 118.1 (2) H6A—C6—H6C 109.5
O6—N1—C8 117.0 (2) H6B—C6—H6C 109.5
O2—C1—C2 105.91 (18) O4—C7—C10 111.74 (15)
O2—C1—C3 108.14 (17) O4—C7—C8 105.60 (16)
C2—C1—C3 114.2 (2) C10—C7—C8 115.18 (18)
O2—C1—H1 109.5 O4—C7—P1 104.31 (12)
C2—C1—H1 109.5 C10—C7—P1 111.47 (14)
C3—C1—H1 109.5 C8—C7—P1 107.80 (13)
C1—C2—H2A 109.5 N1—C8—C9 108.94 (19)
C1—C2—H2B 109.5 N1—C8—C7 108.11 (16)
H2A—C2—H2B 109.5 C9—C8—C7 115.0 (2)
C1—C2—H2C 109.5 N1—C8—H8 108.2
H2A—C2—H2C 109.5 C9—C8—H8 108.2
H2B—C2—H2C 109.5 C7—C8—H8 108.2
C1—C3—H3A 109.5 C8—C9—H9A 109.5
C1—C3—H3B 109.5 C8—C9—H9B 109.5
H3A—C3—H3B 109.5 H9A—C9—H9B 109.5
C1—C3—H3C 109.5 C8—C9—H9C 109.5
H3A—C3—H3C 109.5 H9A—C9—H9C 109.5
H3B—C3—H3C 109.5 H9B—C9—H9C 109.5
O3—C4—C5 107.2 (2) C7—C10—H10A 109.5
O3—C4—C6 107.8 (2) C7—C10—H10B 109.5
C5—C4—C6 111.4 (3) H10A—C10—H10B 109.5
O3—C4—H4 110.1 C7—C10—H10C 109.5
C5—C4—H4 110.1 H10A—C10—H10C 109.5
C6—C4—H4 110.1 H10B—C10—H10C 109.5
O1—P1—O2—C1 −63.20 (17) O3—P1—C7—C10 68.93 (15)
O3—P1—O2—C1 63.34 (17) O1—P1—C7—C8 −37.99 (17)
C7—P1—O2—C1 173.35 (15) O2—P1—C7—C8 87.48 (15)
O1—P1—O3—C4 −21.1 (2) O3—P1—C7—C8 −163.73 (13)
O2—P1—O3—C4 −148.58 (17) O5—N1—C8—C9 −47.5 (3)
C7—P1—O3—C4 103.58 (19) O6—N1—C8—C9 133.2 (2)
P1—O2—C1—C2 136.98 (19) O5—N1—C8—C7 78.1 (3)
P1—O2—C1—C3 −100.2 (2) O6—N1—C8—C7 −101.1 (3)
P1—O3—C4—C5 −132.8 (2) O4—C7—C8—N1 51.7 (2)
P1—O3—C4—C6 107.1 (3) C10—C7—C8—N1 −72.1 (2)
O1—P1—C7—O4 73.94 (14) P1—C7—C8—N1 162.77 (16)
O2—P1—C7—O4 −160.59 (12) O4—C7—C8—C9 173.70 (17)
O3—P1—C7—O4 −51.80 (13) C10—C7—C8—C9 49.9 (2)
O1—P1—C7—C10 −165.33 (14) P1—C7—C8—C9 −75.2 (2)
O2—P1—C7—C10 −39.85 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4o···O1i 0.84 1.90 2.7289 (19) 172

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5269).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Mandal, T., Samanta, S. & Zhao, C.-G. (2007). Org. Lett.9, 943–945. [DOI] [PubMed]
  5. Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052428/hb5269sup1.cif

e-66-00o98-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052428/hb5269Isup2.hkl

e-66-00o98-Isup2.hkl (150.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES