Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):m40. doi: 10.1107/S1600536809052350

Aqua­[4-chloro-2-(2-pyridylmethyl­imino­meth­yl)phenolato]copper(II) nitrate monohydrate

Qing Liang a, Xiaodan Chen a, Huaihong Zhang a, Zhihong Zou a,*
PMCID: PMC2980213  PMID: 21579939

Abstract

In the title mononuclear complex, [Cu(C13H10ClN2O)(H2O)]­NO3·H2O, the CuII atom is four-coordinated by two N atoms and one O atom of the tridentate Schiff base ligand and one O atom from the coordinated water mol­ecule in a slightly distorted square-planar configuration. The nitrate ion inter­acts with the copper center [Cu1⋯O3 = 2.579 (4) Å]. In the crystal, the cations, anions and water mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the role of copper proteins in fundamental biological processes, see: Arnesano et al. (2004). For the chemistry of copper compounds, see: Bosnich (1968); Costes et al. (1995); Downing & Urbach (1969); Ganeshpure et al. (1996). For related structures, see: Sun et al. (2005); You et al. (2004). graphic file with name e-66-00m40-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H10ClN2O)(H2O)]NO3·H2O

  • M r = 407.26

  • Triclinic, Inline graphic

  • a = 7.892 (2) Å

  • b = 8.9741 (12) Å

  • c = 11.8929 (15) Å

  • α = 106.841 (2)°

  • β = 102.198 (1)°

  • γ = 92.897 (1)°

  • V = 782.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.47 × 0.41 × 0.30 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.520, T max = 0.645

  • 4114 measured reflections

  • 2714 independent reflections

  • 2280 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.074

  • S = 1.06

  • 2714 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052350/zq2021sup1.cif

e-66-00m40-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052350/zq2021Isup2.hkl

e-66-00m40-Isup2.hkl (133.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 1.889 (2)
Cu1—N1 1.936 (3)
Cu1—O2 1.975 (2)
Cu1—N2 1.982 (3)
O1—Cu1—N1 93.94 (10)
O1—Cu1—O2 88.85 (9)
N1—Cu1—O2 171.60 (10)
O1—Cu1—N2 176.81 (10)
N1—Cu1—N2 82.98 (11)
O2—Cu1—N2 94.32 (10)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2a⋯O5 0.85 1.83 2.676 (4) 173
O2—H2a⋯N3 0.85 2.52 3.253 (4) 146
O2—H2a⋯O3 0.85 2.57 3.052 (4) 117
O2—H2b⋯O6i 0.85 1.81 2.657 (4) 174
O6—H6a⋯O1ii 0.85 2.08 2.915 (3) 166
O6—H6b⋯O4 0.85 1.93 2.782 (5) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Metals ions are vital for living organisms because they are involved in many fundamental biological processes, e.g. copper proteins known to be involved in a crucial role, such as respiration, iron transport, oxidative stress protection, blood clotting and pigmentation (Arnesano et al., 2004). The study of copper compounds is of great interest in various aspects of chemistry (Downing & Urbach, 1969; Ganeshpure et al., 1996; Bosnich, 1968; Costes et al., 1995). The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The CuII atom is four- coordinated by two nitrogen atoms and one oxygen atom of the tridentate Schiff base ligand, and one oxygen atom from the coordinated water molecule, forming a slightly distorted square-planar coordination configuration. The four coordinating atoms around the Cu centre are approximately coplanar. The Cu1—N2 bond [1.982 (2) Å; Table 1] is a little longer than the value [1.977 (4) Å] observed in a similar copper(II) complex (Sun et al., 2005). The Cu1—N1 bond length [1.936 (2) Å] is comparable with the corresponding value [1.934 (4) Å] observed in the same complex mentioned above (Sun et al., 2005). The Cu1—O1 bond length is 1.889 (18) Å. The nitrate ion is in interaction with the copper center [Cu1···O3 = 2.579 (4) Å]. The bond angles around the CuII centre show some deviations from ideal square-planar geometry. The Schiff base ligands from adjacent molecules are almost parallel due to by π-π interactions leading to the formation of two-dimensional parallel layers (Fig.2). The cations, anions and solvent water molecules are linked by O-H···O hydrogen bonds.

Experimental

2-Aminomethylpyridine (0.1 mmol, 10.8 mg) and 5-chloro-salicylaldehyde (0.1 mmol, 15.6 mg) were dissolved in methanol (10 ml). The mixture was stirred for 1 h to give a clear yellow solution. To this solution was added a water solution (10 ml) of Cu(NO3)2.3H2O (0.1 mmol, 24.2 mg), with stirring. The mixture was stirred for 10 min to give a deep green solution, which was allowed to evaporate slowly in the open at room temperature. After 5 days, deep blue block-shaped crystals suitable for an X-ray diffraction study were formed at the bottom of the vessel.

Refinement

The hydrogen atoms bound to carbon atoms were placed in geometrical positions and refined using a riding model, with C—H = 0.94 Å and Uiso(H) =1.2Ueq(C). The hydrogens of the water molecules were located in Fourier difference maps and refined with a distance restraint of 0.85 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the compound (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C13H10ClN2O)(H2O)]NO3·H2O Z = 2
Mr = 407.26 F(000) = 414
Triclinic, P1 Dx = 1.729 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.892 (2) Å Cell parameters from 13380 reflections
b = 8.9741 (12) Å θ = 1.8–25.0°
c = 11.8929 (15) Å µ = 1.60 mm1
α = 106.841 (2)° T = 298 K
β = 102.198 (1)° Prism, dark blue
γ = 92.897 (1)° 0.47 × 0.41 × 0.30 mm
V = 782.3 (2) Å3

Data collection

Rigaku SCXmini diffractometer 2714 independent reflections
Radiation source: Rotating Anode 2280 reflections with I > 2σ(I)
graphite Rint = 0.016
Detector resolution: 8.192 pixels mm-1 θmax = 25.0°, θmin = 1.8°
ω scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −8→10
Tmin = 0.520, Tmax = 0.645 l = −13→14
4114 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.5072P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2714 reflections Δρmax = 0.40 e Å3
218 parameters Δρmin = −0.39 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0320 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.19716 (5) 0.40689 (4) 0.59865 (3) 0.03271 (17)
Cl1 0.01878 (15) 0.28462 (12) −0.04586 (8) 0.0556 (3)
N1 0.2799 (3) 0.5546 (3) 0.5259 (2) 0.0322 (6)
N2 0.3181 (3) 0.5696 (3) 0.7513 (2) 0.0329 (6)
N3 0.4694 (4) 0.1517 (4) 0.6974 (3) 0.0448 (7)
O1 0.0888 (3) 0.2574 (2) 0.44856 (19) 0.0391 (6)
O2 0.0886 (3) 0.2783 (3) 0.6801 (2) 0.0380 (6)
H2A 0.1681 0.2270 0.7049 0.046*
H2B 0.0040 0.2104 0.6350 0.046*
O3 0.4553 (4) 0.2453 (3) 0.6385 (3) 0.0632 (8)
O4 0.5942 (5) 0.0744 (5) 0.6999 (4) 0.0921 (12)
O5 0.3572 (3) 0.1310 (3) 0.7528 (2) 0.0513 (7)
O6 0.8275 (3) 0.0554 (3) 0.5520 (2) 0.0496 (7)
H6A 0.8662 −0.0326 0.5462 0.059*
H6B 0.7557 0.0650 0.5970 0.059*
C1 0.2497 (4) 0.5376 (4) 0.4119 (3) 0.0322 (7)
H1 0.2942 0.6191 0.3888 0.039*
C2 0.1531 (4) 0.4032 (4) 0.3176 (3) 0.0304 (7)
C3 0.0765 (4) 0.2710 (4) 0.3398 (3) 0.0323 (7)
C4 −0.0198 (5) 0.1487 (4) 0.2394 (3) 0.0381 (8)
H4 −0.0726 0.0618 0.2520 0.046*
C5 −0.0380 (5) 0.1543 (4) 0.1237 (3) 0.0395 (8)
H5 −0.1028 0.0722 0.0589 0.047*
C6 0.0411 (5) 0.2835 (4) 0.1032 (3) 0.0375 (8)
C7 0.1338 (4) 0.4054 (4) 0.1972 (3) 0.0377 (8)
H7 0.1850 0.4911 0.1822 0.045*
C8 0.3778 (5) 0.7018 (4) 0.6111 (3) 0.0382 (8)
H8A 0.3138 0.7891 0.6030 0.046*
H8B 0.4901 0.7184 0.5928 0.046*
C9 0.4047 (4) 0.6945 (4) 0.7380 (3) 0.0328 (7)
C10 0.5091 (5) 0.8088 (4) 0.8357 (3) 0.0420 (9)
H10 0.5697 0.8927 0.8243 0.050*
C11 0.5229 (5) 0.7975 (4) 0.9502 (3) 0.0455 (9)
H11 0.5938 0.8729 1.0171 0.055*
C12 0.4294 (5) 0.6720 (4) 0.9639 (3) 0.0458 (9)
H12 0.4340 0.6634 1.0405 0.055*
C13 0.3297 (5) 0.5603 (4) 0.8633 (3) 0.0417 (9)
H13 0.2682 0.4755 0.8730 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0408 (3) 0.0262 (2) 0.0313 (2) −0.00137 (16) 0.00910 (17) 0.00954 (17)
Cl1 0.0840 (8) 0.0510 (6) 0.0315 (5) 0.0041 (5) 0.0125 (5) 0.0137 (4)
N1 0.0379 (16) 0.0245 (14) 0.0342 (15) −0.0011 (11) 0.0080 (12) 0.0102 (12)
N2 0.0406 (16) 0.0255 (14) 0.0325 (15) 0.0042 (12) 0.0070 (12) 0.0101 (12)
N3 0.0422 (19) 0.0434 (18) 0.0477 (19) −0.0011 (15) 0.0108 (15) 0.0134 (15)
O1 0.0565 (15) 0.0288 (12) 0.0320 (13) −0.0077 (11) 0.0110 (11) 0.0112 (10)
O2 0.0428 (14) 0.0348 (13) 0.0371 (13) −0.0023 (10) 0.0100 (10) 0.0131 (11)
O3 0.0651 (19) 0.0525 (17) 0.093 (2) 0.0078 (14) 0.0379 (17) 0.0412 (17)
O4 0.071 (2) 0.121 (3) 0.132 (3) 0.050 (2) 0.055 (2) 0.083 (3)
O5 0.0485 (16) 0.0679 (18) 0.0474 (15) 0.0065 (13) 0.0170 (13) 0.0288 (14)
O6 0.0546 (16) 0.0384 (14) 0.0572 (16) −0.0014 (12) 0.0160 (13) 0.0162 (13)
C1 0.0331 (18) 0.0297 (17) 0.0395 (19) 0.0029 (14) 0.0115 (14) 0.0174 (15)
C2 0.0323 (17) 0.0266 (16) 0.0342 (17) 0.0037 (13) 0.0081 (14) 0.0119 (14)
C3 0.0364 (18) 0.0289 (17) 0.0338 (18) 0.0060 (14) 0.0105 (14) 0.0111 (14)
C4 0.046 (2) 0.0278 (18) 0.0387 (19) −0.0032 (15) 0.0114 (16) 0.0083 (15)
C5 0.044 (2) 0.0333 (19) 0.0356 (19) 0.0023 (16) 0.0081 (15) 0.0043 (15)
C6 0.045 (2) 0.0371 (19) 0.0306 (18) 0.0078 (16) 0.0102 (15) 0.0099 (16)
C7 0.042 (2) 0.0374 (19) 0.0407 (19) 0.0049 (16) 0.0134 (15) 0.0194 (16)
C8 0.045 (2) 0.0274 (17) 0.0402 (19) −0.0051 (15) 0.0077 (16) 0.0113 (15)
C9 0.0339 (18) 0.0261 (17) 0.0377 (18) 0.0064 (14) 0.0072 (14) 0.0091 (15)
C10 0.043 (2) 0.0322 (19) 0.046 (2) −0.0008 (16) 0.0046 (16) 0.0095 (17)
C11 0.051 (2) 0.037 (2) 0.038 (2) 0.0044 (17) −0.0016 (17) 0.0046 (17)
C12 0.062 (3) 0.039 (2) 0.0327 (19) 0.0069 (18) 0.0041 (17) 0.0095 (17)
C13 0.054 (2) 0.0351 (19) 0.0377 (19) 0.0024 (17) 0.0105 (17) 0.0140 (16)

Geometric parameters (Å, °)

Cu1—O1 1.889 (2) C2—C3 1.421 (4)
Cu1—N1 1.936 (3) C3—C4 1.407 (4)
Cu1—O2 1.975 (2) C4—C5 1.368 (5)
Cu1—N2 1.982 (3) C4—H4 0.9300
Cl1—C6 1.747 (3) C5—C6 1.396 (5)
N1—C1 1.288 (4) C5—H5 0.9300
N1—C8 1.469 (4) C6—C7 1.359 (5)
N2—C13 1.343 (4) C7—H7 0.9300
N2—C9 1.349 (4) C8—C9 1.500 (4)
N3—O4 1.233 (4) C8—H8A 0.9700
N3—O3 1.236 (4) C8—H8B 0.9700
N3—O5 1.247 (4) C9—C10 1.379 (4)
O1—C3 1.318 (4) C10—C11 1.376 (5)
O2—H2A 0.8500 C10—H10 0.9300
O2—H2B 0.8500 C11—C12 1.383 (5)
O6—H6A 0.8500 C11—H11 0.9300
O6—H6B 0.8499 C12—C13 1.372 (5)
C1—C2 1.433 (4) C12—H12 0.9300
C1—H1 0.9300 C13—H13 0.9300
C2—C7 1.414 (4)
O1—Cu1—N1 93.94 (10) C3—C4—H4 119.1
O1—Cu1—O2 88.85 (9) C4—C5—C6 119.9 (3)
N1—Cu1—O2 171.60 (10) C4—C5—H5 120.1
O1—Cu1—N2 176.81 (10) C6—C5—H5 120.1
N1—Cu1—N2 82.98 (11) C7—C6—C5 120.6 (3)
O2—Cu1—N2 94.32 (10) C7—C6—Cl1 120.8 (3)
C1—N1—C8 118.5 (3) C5—C6—Cl1 118.5 (3)
C1—N1—Cu1 125.9 (2) C6—C7—C2 120.6 (3)
C8—N1—Cu1 115.6 (2) C6—C7—H7 119.7
C13—N2—C9 118.7 (3) C2—C7—H7 119.7
C13—N2—Cu1 125.8 (2) N1—C8—C9 109.7 (3)
C9—N2—Cu1 115.3 (2) N1—C8—H8A 109.7
O4—N3—O3 120.0 (3) C9—C8—H8A 109.7
O4—N3—O5 118.9 (3) N1—C8—H8B 109.7
O3—N3—O5 121.1 (3) C9—C8—H8B 109.7
C3—O1—Cu1 127.6 (2) H8A—C8—H8B 108.2
Cu1—O2—H2A 105.5 N2—C9—C10 121.7 (3)
Cu1—O2—H2B 115.4 N2—C9—C8 115.8 (3)
H2A—O2—H2B 106.1 C10—C9—C8 122.5 (3)
H6A—O6—H6B 107.8 C11—C10—C9 119.5 (3)
N1—C1—C2 125.3 (3) C11—C10—H10 120.3
N1—C1—H1 117.3 C9—C10—H10 120.3
C2—C1—H1 117.3 C10—C11—C12 118.7 (3)
C7—C2—C3 119.4 (3) C10—C11—H11 120.6
C7—C2—C1 117.3 (3) C12—C11—H11 120.6
C3—C2—C1 123.4 (3) C13—C12—C11 119.4 (3)
O1—C3—C4 118.5 (3) C13—C12—H12 120.3
O1—C3—C2 123.8 (3) C11—C12—H12 120.3
C4—C3—C2 117.7 (3) N2—C13—C12 122.1 (3)
C5—C4—C3 121.8 (3) N2—C13—H13 119.0
C5—C4—H4 119.1 C12—C13—H13 119.0
O1—Cu1—N1—C1 2.8 (3) O1—C3—C4—C5 −179.8 (3)
O2—Cu1—N1—C1 −106.3 (7) C2—C3—C4—C5 1.0 (5)
N2—Cu1—N1—C1 −178.0 (3) C3—C4—C5—C6 0.3 (5)
O1—Cu1—N1—C8 179.4 (2) C4—C5—C6—C7 −1.1 (5)
O2—Cu1—N1—C8 70.3 (8) C4—C5—C6—Cl1 178.7 (3)
N2—Cu1—N1—C8 −1.4 (2) C5—C6—C7—C2 0.5 (5)
O1—Cu1—N2—C13 −163.3 (19) Cl1—C6—C7—C2 −179.3 (3)
N1—Cu1—N2—C13 −178.8 (3) C3—C2—C7—C6 0.8 (5)
O2—Cu1—N2—C13 9.1 (3) C1—C2—C7—C6 −178.7 (3)
O1—Cu1—N2—C9 12 (2) C1—N1—C8—C9 −177.7 (3)
N1—Cu1—N2—C9 −3.5 (2) Cu1—N1—C8—C9 5.5 (4)
O2—Cu1—N2—C9 −175.5 (2) C13—N2—C9—C10 2.4 (5)
N1—Cu1—O1—C3 −3.4 (3) Cu1—N2—C9—C10 −173.3 (3)
O2—Cu1—O1—C3 168.7 (3) C13—N2—C9—C8 −176.7 (3)
N2—Cu1—O1—C3 −19 (2) Cu1—N2—C9—C8 7.6 (4)
C8—N1—C1—C2 −178.5 (3) N1—C8—C9—N2 −8.4 (4)
Cu1—N1—C1—C2 −2.0 (5) N1—C8—C9—C10 172.5 (3)
N1—C1—C2—C7 −179.8 (3) N2—C9—C10—C11 −1.4 (5)
N1—C1—C2—C3 0.7 (5) C8—C9—C10—C11 177.7 (3)
Cu1—O1—C3—C4 −176.1 (2) C9—C10—C11—C12 −0.8 (5)
Cu1—O1—C3—C2 3.1 (5) C10—C11—C12—C13 1.8 (6)
C7—C2—C3—O1 179.3 (3) C9—N2—C13—C12 −1.3 (5)
C1—C2—C3—O1 −1.2 (5) Cu1—N2—C13—C12 173.9 (3)
C7—C2—C3—C4 −1.5 (5) C11—C12—C13—N2 −0.8 (6)
C1—C2—C3—C4 178.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2a···O5 0.85 1.829 2.676 (4) 173.17
O2—H2a···N3 0.85 2.517 3.253 (4) 145.46
O2—H2a···O3 0.85 2.57 3.052 (4) 117.12
O2—H2b···O6i 0.85 1.811 2.657 (4) 173.63
O6—H6a···O1ii 0.85 2.083 2.915 (3) 165.91
O6—H6b···O4 0.85 1.934 2.782 (5) 176.61

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2021).

References

  1. Arnesano, F., Banci, L., Bertini, I. & Ciofi-Baffoni, S. (2004). Eur. J. Inorg. Chem. pp. 1583–1586.
  2. Bosnich, B. (1968). J. Am. Chem. Soc.90, 627–632.
  3. Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179–2187.
  4. Downing, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc.91, 5977–5983.
  5. Ganeshpure, P. A., Tembe, G. L. & Satish, S. (1996). J. Mol. Catal. A Chem.113, L423–L425.
  6. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sun, Y.-X., Gao, G.-Z., Pei, H.-X. & Zhang, R. (2005). Acta Cryst. E61, m370–m372.
  9. You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884–m886.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052350/zq2021sup1.cif

e-66-00m40-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052350/zq2021Isup2.hkl

e-66-00m40-Isup2.hkl (133.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES