Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 24;66(Pt 1):m98. doi: 10.1107/S1600536809054804

Di-μ-chlorido-bis­[bis­(ethyl­enediamine-κ2 N,N′)cadmium(II)] dichloride

Christian Näther a,*, Inke Jess a
PMCID: PMC2980226  PMID: 21579987

Abstract

The crystal structure of the title compound, [Cd2Cl2(C2H8N2)4]Cl2, consists of binuclear centrosymmetric [Cd2(C2H8N2)4Cl2]2+ cations and discrete chloride anions. The CdII cation is coordinated by four N atoms of two ethyl­enediamine ligands and two symmetry-related chloride anions within a distorted CdN4Cl2 octa­hedron. Two CdII cations are connected by two chloride anions via μ2-coordination, forming a four-membered Cd2Cl2 ring. The uncoordinated chloride anions are linked to the amino groups via N—H⋯Cl hydrogen bonding. Two C atoms of one of the two crystallographically independent ethyl­enediamine ligands are disordered and were refined using a split model [occupancy ratio 0.674 (9):0.326 (9)].

Related literature

For the general background to this work see: Bhosekar et al. (2006); Näther et al. (2007a,b ). For related structures, see: Cannas et al. (1980); Marsh (1999); Pauly et al. (2000); Chen et al. (2005).graphic file with name e-66-00m98-scheme1.jpg

Experimental

Crystal data

  • [Cd2Cl2(C2H8N2)4]Cl2

  • M r = 607.02

  • Monoclinic, Inline graphic

  • a = 6.3869 (8) Å

  • b = 11.3143 (10) Å

  • c = 14.8255 (19) Å

  • β = 92.621 (13)°

  • V = 1070.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) T min = 0.576, T max = 0.613

  • 6562 measured reflections

  • 3110 independent reflections

  • 2699 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.047

  • S = 1.04

  • 3110 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054804/wm2291sup1.cif

e-66-00m98-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054804/wm2291Isup2.hkl

e-66-00m98-Isup2.hkl (152.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N2 2.3268 (15)
Cd1—N3 2.3314 (15)
Cd1—N1 2.3513 (14)
Cd1—N4 2.3971 (16)
Cd1—Cl1i 2.6200 (5)
Cd1—Cl1 2.7078 (5)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl2ii 0.90 2.73 3.6137 (15) 168
N1—H2N1⋯Cl2i 0.90 2.54 3.3941 (15) 159
N2—H2N2⋯Cl2iii 0.90 2.42 3.3123 (15) 171
N3—H1N3⋯Cl1iv 0.90 2.53 3.3581 (16) 154
N3—H2N3⋯Cl2 0.90 2.67 3.4919 (17) 152
N4—H3N4⋯Cl2ii 0.90 2.78 3.653 (2) 164
N4—H4N4⋯Cl2iii 0.90 2.85 3.708 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Projekt No. NA 720/1–1). We thank Professor Dr Wolfgang Bensch for the facility to use his experimental equipment.

supplementary crystallographic information

Comment

Recently, we became interested in the synthesis, structures and thermal behaviour of coordination polymers based on zinc(II) halides and N-donor ligands. We have found out that new ligand-deficient coordination polymers can simply be prepared by thermal decomposition of suitable ligand-rich precursor compounds (Bhosekar et al., 2006; Näther et al., 2007a,b). In related studies we started to investigate the properties of the heavier homologue cadmium. As a part of this project the crystal structure of the title compound, [Cd2(C2H8N2)4Cl2]Cl2, was investigated.

In the crystal structure discrete [(C2H8N2)4Cd2Cl2]2+ cations are found which are located on centres of inversion. The structure contains additional chloride anions which are not connected to the cations and are located in general positions. In the complex cation the Cd2+ atoms are cis-coordinated by two symmetry related chloride anions and four N atoms of two crystallographically independent ethylenediamine ligands, leading to distorted CdN4Cl2 octahedra (Fig. 1 and Table 1). The Cd2+ atoms are linked by two symmetry-related chloride anions into a 4-membered centrosymmetric and planar Cd2Cl2 ring. This structural motif is known and found in some other Cd halide complexes (Cannas et al., 1980; Marsh, 1999; Pauly et al., 2000). Both Cd—Cl distances (Table 1) are different but comparable to those in the related compounds. The chloride anions that are not involved in Cd coordination are connected to the H atoms of the amino groups by N—H···Cl hydrogen bonding (Table 2).

Experimental

0.1833 g CdCl2 (1 mmol) were reacted with 0.3005 g ethylenediamine (5 mmol) in a glass tube at room temperature. After three days colourless crystals of the title compound have formed as the minor phase in a mixture with the literature known compound tris(ethylenediamine-N,N')-cadmium(II) dichloride monohydrate (Chen et al., 2005).

Refinement

All H atoms were were positioned with idealized geometry and were refined isotropically with Ueq(H) = 1.2 Ueq(C,N) of the parent atom using a riding model with C—H = 0.97 and N—H = 0.90 Å. Two C atoms of one of the two crystallographically independent ethylenediamine ligands are disordered and were refined using a split model with a 0.674 (9): 0.326 (9) occupancy ratio.

Figures

Fig. 1.

Fig. 1.

: Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i=-x + 1, -y + 1, -z + 1.

Crystal data

[Cd2Cl2(C2H8N2)4]Cl2 F(000) = 600
Mr = 607.02 Dx = 1.884 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 120 reflections
a = 6.3869 (8) Å θ = 10–25°
b = 11.3143 (10) Å µ = 2.49 mm1
c = 14.8255 (19) Å T = 293 K
β = 92.621 (13)° Block, colourless
V = 1070.2 (2) Å3 0.3 × 0.2 × 0.2 mm
Z = 2

Data collection

Stoe IPDS-1 diffractometer 3110 independent reflections
Radiation source: fine-focus sealed tube 2699 reflections with I > 2σ(I)
graphite Rint = 0.018
φ scan θmax = 30.0°, θmin = 2.3°
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) h = 0→8
Tmin = 0.576, Tmax = 0.613 k = −15→15
6562 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.1639P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
3110 reflections Δρmax = 0.53 e Å3
120 parameters Δρmin = −0.49 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0088 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.658581 (17) 0.626379 (10) 0.561674 (7) 0.03352 (5)
Cl1 0.70739 (6) 0.39404 (4) 0.52416 (3) 0.04109 (9)
Cl2 0.67265 (8) 0.63867 (4) 0.20632 (4) 0.05032 (11)
N1 0.5276 (2) 0.61258 (13) 0.70697 (10) 0.0382 (3)
H1N1 0.4337 0.6703 0.7155 0.046*
H2N1 0.4645 0.5423 0.7142 0.046*
C1 0.7084 (3) 0.62488 (17) 0.77133 (11) 0.0475 (4)
H1A 0.6709 0.5970 0.8303 0.057*
H1B 0.7471 0.7076 0.7768 0.057*
C2 0.8923 (3) 0.55455 (18) 0.73977 (13) 0.0491 (4)
H2A 1.0072 0.5586 0.7848 0.059*
H2B 0.8523 0.4723 0.7322 0.059*
N2 0.9601 (2) 0.60183 (13) 0.65389 (10) 0.0394 (3)
H1N2 1.0487 0.5512 0.6284 0.047*
H2N2 1.0259 0.6715 0.6627 0.047*
N3 0.8018 (2) 0.70351 (15) 0.43233 (10) 0.0447 (3)
H1N3 0.9427 0.7019 0.4377 0.054* 0.326 (9)
H2N3 0.7598 0.6610 0.3835 0.054* 0.326 (9)
H3N3 0.9223 0.6660 0.4214 0.054* 0.674 (9)
H4N3 0.7121 0.6933 0.3844 0.054* 0.674 (9)
C3 0.7267 (15) 0.8259 (6) 0.4236 (4) 0.0468 (19) 0.326 (9)
H3C 0.7886 0.8641 0.3726 0.056* 0.326 (9)
H3D 0.5754 0.8271 0.4139 0.056* 0.326 (9)
C4 0.7884 (17) 0.8874 (6) 0.5075 (5) 0.054 (2) 0.326 (9)
H4C 0.7632 0.9716 0.5009 0.065* 0.326 (9)
H4D 0.9365 0.8753 0.5221 0.065* 0.326 (9)
C3' 0.8423 (7) 0.8322 (3) 0.4474 (3) 0.0536 (10) 0.674 (9)
H3A 0.8603 0.8708 0.3899 0.064* 0.674 (9)
H3B 0.9708 0.8421 0.4841 0.064* 0.674 (9)
C4' 0.6641 (8) 0.8893 (3) 0.4939 (3) 0.0557 (10) 0.674 (9)
H4A 0.6870 0.9738 0.4989 0.067* 0.674 (9)
H4B 0.5333 0.8760 0.4595 0.067* 0.674 (9)
N4 0.6547 (3) 0.83613 (14) 0.58432 (12) 0.0531 (4)
H1N4 0.5228 0.8642 0.5798 0.064* 0.326 (9)
H2N4 0.7120 0.8550 0.6390 0.064* 0.326 (9)
H3N4 0.5368 0.8583 0.6107 0.064* 0.674 (9)
H4N4 0.7658 0.8588 0.6197 0.064* 0.674 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03410 (7) 0.03660 (7) 0.02973 (6) −0.00457 (4) 0.00013 (4) −0.00078 (4)
Cl1 0.02885 (16) 0.04039 (19) 0.0533 (2) 0.00407 (14) −0.00646 (15) −0.01037 (16)
Cl2 0.0504 (2) 0.0410 (2) 0.0597 (3) 0.00376 (17) 0.0042 (2) 0.01005 (18)
N1 0.0337 (6) 0.0439 (7) 0.0374 (6) −0.0007 (5) 0.0052 (5) 0.0035 (5)
C1 0.0458 (9) 0.0665 (12) 0.0302 (7) 0.0017 (8) 0.0017 (6) −0.0002 (7)
C2 0.0439 (9) 0.0571 (10) 0.0455 (9) 0.0089 (8) −0.0067 (7) 0.0085 (8)
N2 0.0303 (6) 0.0422 (7) 0.0458 (7) 0.0000 (5) 0.0008 (5) −0.0061 (6)
N3 0.0360 (7) 0.0607 (9) 0.0378 (7) 0.0050 (6) 0.0062 (5) 0.0027 (6)
C3 0.045 (4) 0.051 (3) 0.044 (3) −0.003 (3) 0.002 (3) 0.019 (2)
C4 0.063 (5) 0.038 (3) 0.062 (4) −0.008 (3) 0.008 (4) 0.013 (3)
C3' 0.047 (2) 0.0619 (19) 0.0529 (19) −0.0065 (14) 0.0122 (16) 0.0177 (14)
C4' 0.059 (3) 0.0456 (15) 0.063 (2) 0.0064 (15) 0.0113 (17) 0.0172 (13)
N4 0.0788 (12) 0.0383 (7) 0.0430 (8) 0.0001 (8) 0.0106 (8) −0.0019 (7)

Geometric parameters (Å, °)

Cd1—N2 2.3268 (15) N3—H1N3 0.9000
Cd1—N3 2.3314 (15) N3—H2N3 0.9000
Cd1—N1 2.3513 (14) N3—H3N3 0.9000
Cd1—N4 2.3971 (16) N3—H4N3 0.9000
Cd1—Cl1i 2.6200 (5) C3—C4 1.464 (12)
Cd1—Cl1 2.7078 (5) C3—H3C 0.9700
Cl1—Cd1i 2.6200 (5) C3—H3D 0.9700
N1—C1 1.471 (2) C4—N4 1.566 (7)
N1—H1N1 0.9000 C4—H4C 0.9700
N1—H2N1 0.9000 C4—H4D 0.9700
C1—C2 1.511 (3) C3'—C4' 1.503 (6)
C1—H1A 0.9700 C3'—H3A 0.9700
C1—H1B 0.9700 C3'—H3B 0.9700
C2—N2 1.465 (2) C4'—N4 1.473 (4)
C2—H2A 0.9700 C4'—H4A 0.9700
C2—H2B 0.9700 C4'—H4B 0.9700
N2—H1N2 0.9000 N4—H1N4 0.9000
N2—H2N2 0.9000 N4—H2N4 0.9000
N3—C3 1.469 (7) N4—H3N4 0.9000
N3—C3' 1.494 (4) N4—H4N4 0.9000
N2—Cd1—N3 100.53 (6) H1N3—N3—H3N3 31.4
N2—Cd1—N1 76.90 (5) H2N3—N3—H3N3 80.1
N3—Cd1—N1 161.39 (5) C3—N3—H4N3 81.8
N2—Cd1—N4 92.83 (6) C3'—N3—H4N3 110.0
N3—Cd1—N4 75.61 (6) Cd1—N3—H4N3 110.0
N1—Cd1—N4 86.05 (5) H1N3—N3—H4N3 131.6
N2—Cd1—Cl1i 166.14 (4) H2N3—N3—H4N3 30.7
N3—Cd1—Cl1i 90.48 (4) H3N3—N3—H4N3 108.4
N1—Cd1—Cl1i 95.29 (4) C4—C3—N3 107.4 (7)
N4—Cd1—Cl1i 98.09 (5) C4—C3—H3C 110.2
N2—Cd1—Cl1 84.54 (4) N3—C3—H3C 110.2
N3—Cd1—Cl1 98.12 (4) C4—C3—H3D 110.2
N1—Cd1—Cl1 99.95 (4) N3—C3—H3D 110.2
N4—Cd1—Cl1 172.69 (5) H3C—C3—H3D 108.5
Cl1i—Cd1—Cl1 85.593 (13) C3—C4—N4 107.9 (6)
Cd1i—Cl1—Cd1 94.407 (13) C3—C4—H4C 110.1
C1—N1—Cd1 106.64 (10) N4—C4—H4C 110.1
C1—N1—H1N1 110.4 C3—C4—H4D 110.1
Cd1—N1—H1N1 110.4 N4—C4—H4D 110.1
C1—N1—H2N1 110.4 H4C—C4—H4D 108.4
Cd1—N1—H2N1 110.4 N3—C3'—C4' 111.0 (3)
H1N1—N1—H2N1 108.6 N3—C3'—H3A 109.4
N1—C1—C2 110.35 (15) C4'—C3'—H3A 109.4
N1—C1—H1A 109.6 N3—C3'—H3B 109.4
C2—C1—H1A 109.6 C4'—C3'—H3B 109.4
N1—C1—H1B 109.6 H3A—C3'—H3B 108.0
C2—C1—H1B 109.6 N4—C4'—C3' 107.7 (3)
H1A—C1—H1B 108.1 N4—C4'—H4A 110.2
N2—C2—C1 109.99 (14) C3'—C4'—H4A 110.2
N2—C2—H2A 109.7 N4—C4'—H4B 110.2
C1—C2—H2A 109.7 C3'—C4'—H4B 110.2
N2—C2—H2B 109.7 H4A—C4'—H4B 108.5
C1—C2—H2B 109.7 C4'—N4—C4 30.7 (3)
H2A—C2—H2B 108.2 C4'—N4—Cd1 106.00 (17)
C2—N2—Cd1 106.55 (10) C4—N4—Cd1 104.8 (3)
C2—N2—H1N2 110.4 C4'—N4—H1N4 82.3
Cd1—N2—H1N2 110.4 C4—N4—H1N4 110.8
C2—N2—H2N2 110.4 Cd1—N4—H1N4 110.8
Cd1—N2—H2N2 110.4 C4'—N4—H2N4 133.7
H1N2—N2—H2N2 108.6 C4—N4—H2N4 110.8
C3—N3—C3' 31.6 (3) Cd1—N4—H2N4 110.8
C3—N3—Cd1 106.7 (2) H1N4—N4—H2N4 108.9
C3'—N3—Cd1 108.26 (14) C4'—N4—H3N4 110.5
C3—N3—H1N3 110.4 C4—N4—H3N4 135.0
C3'—N3—H1N3 80.9 Cd1—N4—H3N4 110.5
Cd1—N3—H1N3 110.4 H1N4—N4—H3N4 30.0
C3—N3—H2N3 110.4 H2N4—N4—H3N4 81.8
C3'—N3—H2N3 133.2 C4'—N4—H4N4 110.5
Cd1—N3—H2N3 110.4 C4—N4—H4N4 83.0
H1N3—N3—H2N3 108.6 Cd1—N4—H4N4 110.5
C3—N3—H3N3 135.0 H1N4—N4—H4N4 130.7
C3'—N3—H3N3 110.0 H2N4—N4—H4N4 29.5
Cd1—N3—H3N3 110.0 H3N4—N4—H4N4 108.7

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···Cl2ii 0.90 2.73 3.6137 (15) 168
N1—H2N1···Cl2i 0.90 2.54 3.3941 (15) 159
N2—H2N2···Cl2iii 0.90 2.42 3.3123 (15) 171
N3—H1N3···Cl1iv 0.90 2.53 3.3581 (16) 154
N3—H2N3···Cl2 0.90 2.67 3.4919 (17) 152
N4—H3N4···Cl2ii 0.90 2.78 3.653 (2) 164
N4—H4N4···Cl2iii 0.90 2.85 3.708 (2) 161

Symmetry codes: (ii) x−1/2, −y+3/2, z+1/2; (i) −x+1, −y+1, −z+1; (iii) x+1/2, −y+3/2, z+1/2; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2291).

References

  1. Bhosekar, G., Jess, I. & Näther, C. (2006). Inorg. Chem.45, 6508–6515. [DOI] [PubMed]
  2. Cannas, M., Marongiu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090–2094.
  3. Chen, W.-T., Wang, M. S., Cai, L. Z., Guo, G. C. & Huang, J. S. (2005). Aust. J. Chem.58, 578–584 .
  4. Marsh, R. E. (1999). Acta Cryst. B55, 931–936. [DOI] [PubMed]
  5. Näther, C., Bhosekar, G. & Jess, I. (2007a). Inorg. Chem.46, 8079–8087. [DOI] [PubMed]
  6. Näther, C., Bhosekar, G. & Jess, I. (2007b). Eur. J. Inorg. Chem.34, 5353–5359.
  7. Pauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J.6, 2830–2846. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (1992). DIF4 and REDU4 Stoe & Cie, Darmstadt, Germany.
  10. Stoe & Cie (1998). X-SHAPE Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054804/wm2291sup1.cif

e-66-00m98-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054804/wm2291Isup2.hkl

e-66-00m98-Isup2.hkl (152.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES