Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 9;66(Pt 1):m29. doi: 10.1107/S1600536809051381

catena-Poly[[(liriodenine-κ2 N,O)lead(II)]-di-μ-chlorido]

Yan-Tao Qin a, Lu Tao a, Tian-Jing He a, Yan-Cheng Liu a, Zhen-Feng Chen a,*
PMCID: PMC2980232  PMID: 21579928

Abstract

The title compound, [PbCl2(C17H9NO3)]n, was synthesized by the hydro­thermal reaction of PbCl2 and liriodenine. The lead(II) atom has a distorted octa­hedral environment made up of the O and N atoms of the liriodenine ligand [Pb—O 2.666 (4) Å, Pb—N 2.587 (5) Å, O—Pb—N 61.78 (14)°] and four bridging chloro ligands, which link the complex mol­ecules into infinite chains along the a axis. Both crystallographically independent chloro-bridges are asymmetric, so that the Pb atom participates in two short [2.6872 (18) and 2.7952 (18) Å] and two noticeably longer Pb—Cl bonds [2.9626 (18) and 3.031 (2) Å].

Related literature

For liriodenine metal complexes, see: Chen et al. (2009). For the structure of a similar lead(II) coordination polymer, see: Engelhardt et al. (1987).graphic file with name e-66-00m29-scheme1.jpg

Experimental

Crystal data

  • [PbCl2(C17H9NO3)]

  • M r = 553.34

  • Triclinic, Inline graphic

  • a = 7.2280 (18) Å

  • b = 10.332 (3) Å

  • c = 11.307 (3) Å

  • α = 104.481 (6)°

  • β = 100.479 (4)°

  • γ = 99.686 (4)°

  • V = 783.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.13 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.077, T max = 0.188

  • 7685 measured reflections

  • 2847 independent reflections

  • 2545 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.065

  • S = 1.05

  • 2847 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.28 e Å−3

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809051381/ya2112sup1.cif

e-66-00m29-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051381/ya2112Isup2.hkl

e-66-00m29-Isup2.hkl (139.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 20861002), the National Basic Research Program of China (2009CB526503), the Natural Science Foundation of Guangxi of China (No. 0991003,0991012Z) and the Open Foundation of the Key Laboratory for the Chemistry and Mol­ecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

supplementary crystallographic information

Comment

Liriodenine, 8H-[1,3]benzodioxolo[6,5,4-de]benzo[g]quinolin-8-one, is an oxo-aporphine alkaloid, which was isolated from the Z. nitidum (TCM) spiders found in China (Chen et al., 2009). With its N and carbonyl O donor atoms, liriodenine can serve as bidentate chelate ligand in metal complex. In our previous work, the synthesis, crystal structures and anticancer activity of platinum(II) and ruthenium(II) complexes of liriodenine were reported (Chen et al., 2009). In order to extend our knowledge on liriodenine coordination chemistry we turned to the main-group metals and report herein the the first structure of lead(II) complex with liriodenine.

As shown in Fig.1, similarly to what was observed in the structure of catena-[cis-bis(µ2-chloro)-(3-methylpyridine-N)]lead(II) (Engelhardt et al., 1987), the Pb1 atom in the title compound is six-coordinated by the O1 and N1 atoms of the liriodenine ligand [Pb1—O1 2.666 (4) Å, Pb1—N1 2.587 (5) Å] and four µ2-chloro-atoms which link the complex molecules into infinite chains running along the a axis. The chloro-bridges show noticeable asymmetry with the Pb1—Cl1 [2.7952 (18) Å] and Pb1—Cl2 [2.6872 (18) Å] bonds being significantly shorter than Pb1—Cl1ii [3.031 (2) Å], and Pb1—Cl2i [2.9626 (18) Å] (see Fig. 1). The octahedral coordination of the Pb1 atom shows considerable distortion due to the presence of the chelate ligand [angle O1—Pb1—N1 is equal to 61.78 (14)°] and the asymmetry of the chloro-bridges, e.g. the N1—Pb1—Cl2 and O1—Pb1—Cl2 angles are 84.80 (11)° and 136.98 (11)°, respectively. The overall geometry of the complex compares quite well with that of catena-(cis-bis((µ2-chloro)-(3-methylpyridine-N)) lead(II) (Engelhardt et al. 1987), and the geometric parameters of liriodenine are close to those reported previously (Chen et al., 2009).

Experimental

PbCl2 (0.8 mmol, 0.222 g) and liriodenine (0.8 mmol, 0.220 g) were thoroughly mixed in a mortar with a pestle, and placed in a thick-walled Pyrex tube (ca 20 cm long). After addition of EtOH (0.6 ml) and H2O (0.3 ml), the tube was frozen with liquid nitrogen, evacuated under vacuum and sealed with a torch. The tube was heated at 110°C for 2 days and then slowly cooled down to room temperature; brown-red block crystals were obtained. Yield: 40%.

Refinement

The H atoms bonded to C atoms were positioned geometrically (C—H 0.93 Å for aromatic and 0.97 Å for aliphatic qroups). and included in the refinement in riding model approximation with Uiso(H) = 1.2Ueq(C). The highest peak of 1.19 e Å-3 is located at 1.65 Å from O3; the deepest hole of -1.28 is found at a distance of 0.94 Å from Pb1.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme; displacement ellipsoids are drawn at the 50% probability level. Symmetry transformations (i): -x + 1, -y + 1, -z + 1; (ii): -x,-y + 1,-z + 1.

Crystal data

[PbCl2(C17H9NO3)] Z = 2
Mr = 553.34 F(000) = 516
Triclinic, P1 Dx = 2.346 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71070 Å
a = 7.2280 (18) Å Cell parameters from 3068 reflections
b = 10.332 (3) Å θ = 3.1–25.3°
c = 11.307 (3) Å µ = 11.13 mm1
α = 104.481 (6)° T = 293 K
β = 100.479 (4)° Block, brown-red
γ = 99.686 (4)° 0.35 × 0.20 × 0.15 mm
V = 783.4 (3) Å3

Data collection

Rigaku Mercury CCD diffractometer 2847 independent reflections
Radiation source: fine-focus sealed tube 2545 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 7.31 pixels mm-1 θmax = 25.3°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −12→12
Tmin = 0.077, Tmax = 0.188 l = −13→11
7685 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0269P)2] where P = (Fo2 + 2Fc2)/3
2847 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 1.19 e Å3
0 restraints Δρmin = −1.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.19801 (4) 0.42620 (2) 0.40684 (2) 0.03726 (11)
Cl1 −0.1055 (3) 0.29827 (18) 0.4893 (2) 0.0629 (6)
Cl2 0.4274 (3) 0.44005 (18) 0.62730 (15) 0.0502 (5)
O1 0.1822 (7) 0.3210 (4) 0.1636 (4) 0.0497 (12)
O2 0.3150 (8) −0.4078 (5) 0.0294 (4) 0.0578 (14)
O3 0.2905 (7) −0.2806 (4) −0.1103 (4) 0.0480 (12)
N1 0.2587 (7) 0.1823 (5) 0.3329 (4) 0.0326 (12)
C1 0.2820 (9) 0.1075 (7) 0.4135 (6) 0.0398 (16)
H1 0.2900 0.1488 0.4979 0.048*
C2 0.2945 (9) −0.0270 (7) 0.3773 (6) 0.0395 (15)
H2 0.3066 −0.0751 0.4366 0.047*
C3 0.2895 (8) −0.0921 (6) 0.2529 (5) 0.0313 (14)
C4 0.2695 (8) −0.0126 (6) 0.1654 (5) 0.0273 (13)
C5 0.2517 (8) 0.1231 (6) 0.2115 (5) 0.0276 (13)
C6 0.2153 (8) 0.2068 (6) 0.1253 (5) 0.0302 (14)
C7 0.2194 (8) 0.1492 (6) −0.0059 (5) 0.0303 (14)
C8 0.1938 (9) 0.2315 (6) −0.0863 (6) 0.0365 (15)
H8 0.1783 0.3203 −0.0549 0.044*
C9 0.1914 (9) 0.1812 (7) −0.2120 (6) 0.0420 (16)
H9 0.1775 0.2360 −0.2655 0.050*
C10 0.2102 (9) 0.0463 (7) −0.2573 (6) 0.0447 (17)
H10 0.2059 0.0111 −0.3421 0.054*
C11 0.2351 (9) −0.0361 (6) −0.1792 (5) 0.0349 (15)
H11 0.2488 −0.1250 −0.2117 0.042*
C12 0.2399 (7) 0.0135 (6) −0.0515 (5) 0.0252 (13)
C13 0.2642 (8) −0.0694 (6) 0.0357 (5) 0.0259 (13)
C14 0.2808 (9) −0.2026 (6) 0.0034 (6) 0.0360 (15)
C15 0.2995 (9) −0.2795 (6) 0.0903 (6) 0.0374 (15)
C16 0.3033 (9) −0.2300 (6) 0.2118 (6) 0.0401 (16)
H16 0.3144 −0.2837 0.2666 0.048*
C17 0.2998 (14) −0.4135 (7) −0.0990 (7) 0.066 (2)
H17A 0.1845 −0.4802 −0.1511 0.079*
H17B 0.4111 −0.4405 −0.1261 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.04943 (18) 0.03102 (16) 0.03286 (16) 0.01243 (12) 0.01518 (11) 0.00575 (10)
Cl1 0.0760 (14) 0.0351 (10) 0.0866 (14) 0.0132 (9) 0.0457 (12) 0.0144 (9)
Cl2 0.0624 (12) 0.0544 (11) 0.0345 (9) 0.0071 (9) 0.0160 (8) 0.0146 (8)
O1 0.086 (4) 0.034 (3) 0.032 (3) 0.023 (3) 0.013 (2) 0.008 (2)
O2 0.101 (4) 0.032 (3) 0.048 (3) 0.027 (3) 0.027 (3) 0.011 (2)
O3 0.080 (4) 0.032 (3) 0.035 (3) 0.022 (2) 0.020 (2) 0.005 (2)
N1 0.040 (3) 0.033 (3) 0.024 (3) 0.011 (2) 0.006 (2) 0.008 (2)
C1 0.053 (4) 0.044 (4) 0.024 (3) 0.016 (3) 0.007 (3) 0.009 (3)
C2 0.052 (4) 0.038 (4) 0.034 (4) 0.017 (3) 0.011 (3) 0.015 (3)
C3 0.033 (3) 0.032 (4) 0.030 (3) 0.009 (3) 0.006 (3) 0.012 (3)
C4 0.022 (3) 0.028 (3) 0.032 (3) 0.006 (3) 0.009 (2) 0.008 (3)
C5 0.031 (3) 0.023 (3) 0.027 (3) 0.006 (3) 0.007 (2) 0.004 (2)
C6 0.032 (3) 0.023 (3) 0.029 (3) 0.002 (3) 0.004 (3) 0.002 (3)
C7 0.028 (3) 0.031 (3) 0.030 (3) 0.004 (3) 0.008 (3) 0.006 (3)
C8 0.047 (4) 0.030 (4) 0.031 (3) 0.003 (3) 0.009 (3) 0.010 (3)
C9 0.055 (4) 0.037 (4) 0.040 (4) 0.010 (3) 0.014 (3) 0.019 (3)
C10 0.049 (4) 0.053 (5) 0.028 (3) 0.006 (4) 0.014 (3) 0.006 (3)
C11 0.039 (4) 0.034 (4) 0.031 (3) 0.006 (3) 0.012 (3) 0.007 (3)
C12 0.023 (3) 0.024 (3) 0.028 (3) 0.004 (2) 0.008 (2) 0.004 (2)
C13 0.025 (3) 0.023 (3) 0.030 (3) 0.009 (2) 0.010 (2) 0.003 (2)
C14 0.043 (4) 0.033 (4) 0.033 (4) 0.011 (3) 0.017 (3) 0.003 (3)
C15 0.046 (4) 0.024 (3) 0.048 (4) 0.014 (3) 0.018 (3) 0.012 (3)
C16 0.054 (4) 0.031 (4) 0.044 (4) 0.013 (3) 0.018 (3) 0.018 (3)
C17 0.116 (7) 0.034 (4) 0.046 (5) 0.021 (4) 0.024 (5) 0.003 (3)

Geometric parameters (Å, °)

Pb1—N1 2.587 (5) C4—C5 1.405 (8)
Pb1—O1 2.666 (4) C4—C13 1.428 (7)
Pb1—Cl2 2.6872 (18) C5—C6 1.474 (8)
Pb1—Cl1 2.7952 (18) C6—C7 1.462 (8)
Pb1—Cl2i 2.9626 (18) C7—C8 1.401 (8)
Pb1—Cl1ii 3.031 (2) C7—C12 1.411 (8)
Cl1—Pb1ii 3.031 (2) C8—C9 1.382 (8)
Cl2—Pb1i 2.9626 (18) C8—H8 0.9300
O1—C6 1.230 (7) C9—C10 1.399 (9)
O2—C15 1.366 (7) C9—H9 0.9300
O2—C17 1.422 (8) C10—C11 1.380 (9)
O3—C14 1.356 (7) C10—H10 0.9300
O3—C17 1.422 (8) C11—C12 1.397 (8)
N1—C1 1.340 (7) C11—H11 0.9300
N1—C5 1.344 (7) C12—C13 1.465 (8)
C1—C2 1.370 (9) C13—C14 1.365 (8)
C1—H1 0.9300 C14—C15 1.412 (8)
C2—C3 1.390 (8) C15—C16 1.334 (8)
C2—H2 0.9300 C16—H16 0.9300
C3—C16 1.411 (8) C17—H17A 0.9700
C3—C4 1.438 (8) C17—H17B 0.9700
N1—Pb1—O1 61.78 (14) O1—C6—C5 120.5 (5)
N1—Pb1—Cl2 84.80 (11) C7—C6—C5 117.8 (5)
O1—Pb1—Cl2 136.98 (11) C8—C7—C12 121.0 (5)
N1—Pb1—Cl1 84.76 (11) C8—C7—C6 117.6 (5)
O1—Pb1—Cl1 114.05 (11) C12—C7—C6 121.3 (5)
Cl2—Pb1—Cl1 86.77 (6) C9—C8—C7 120.2 (6)
N1—Pb1—Cl2i 93.28 (11) C9—C8—H8 119.9
O1—Pb1—Cl2i 75.61 (11) C7—C8—H8 119.9
Cl2—Pb1—Cl2i 80.49 (5) C8—C9—C10 118.7 (6)
Cl1—Pb1—Cl2i 167.23 (6) C8—C9—H9 120.6
N1—Pb1—Cl1ii 174.35 (11) C10—C9—H9 120.6
O1—Pb1—Cl1ii 122.56 (10) C11—C10—C9 121.7 (6)
Cl2—Pb1—Cl1ii 92.96 (6) C11—C10—H10 119.2
Cl1—Pb1—Cl1ii 89.95 (5) C9—C10—H10 119.2
Cl2i—Pb1—Cl1ii 91.45 (5) C10—C11—C12 120.4 (6)
Pb1—Cl1—Pb1ii 90.05 (5) C10—C11—H11 119.8
Pb1—Cl2—Pb1i 99.51 (5) C12—C11—H11 119.8
C6—O1—Pb1 120.2 (4) C11—C12—C7 118.0 (5)
C15—O2—C17 107.0 (5) C11—C12—C13 122.9 (5)
C14—O3—C17 107.2 (5) C7—C12—C13 119.1 (5)
C1—N1—C5 118.2 (5) C14—C13—C4 114.7 (5)
C1—N1—Pb1 120.4 (4) C14—C13—C12 125.1 (5)
C5—N1—Pb1 121.2 (4) C4—C13—C12 120.3 (5)
N1—C1—C2 123.1 (5) O3—C14—C13 127.8 (6)
N1—C1—H1 118.5 O3—C14—C15 109.0 (5)
C2—C1—H1 118.5 C13—C14—C15 123.1 (5)
C1—C2—C3 120.7 (6) C16—C15—O2 127.3 (6)
C1—C2—H2 119.7 C16—C15—C14 123.8 (6)
C3—C2—H2 119.7 O2—C15—C14 108.8 (5)
C2—C3—C16 122.5 (5) C15—C16—C3 116.5 (6)
C2—C3—C4 117.1 (5) C15—C16—H16 121.8
C16—C3—C4 120.4 (5) C3—C16—H16 121.8
C5—C4—C13 120.8 (5) O2—C17—O3 107.6 (5)
C5—C4—C3 117.6 (5) O2—C17—H17A 110.2
C13—C4—C3 121.6 (5) O3—C17—H17A 110.2
N1—C5—C4 123.2 (5) O2—C17—H17B 110.2
N1—C5—C6 116.2 (5) O3—C17—H17B 110.2
C4—C5—C6 120.5 (5) H17A—C17—H17B 108.5
O1—C6—C7 121.7 (5)
N1—Pb1—Cl1—Pb1ii 178.04 (11) N1—C5—C6—C7 176.0 (5)
O1—Pb1—Cl1—Pb1ii −126.08 (11) C4—C5—C6—C7 −6.5 (8)
Cl2—Pb1—Cl1—Pb1ii 92.96 (6) O1—C6—C7—C8 3.1 (9)
Cl2i—Pb1—Cl1—Pb1ii 96.4 (2) C5—C6—C7—C8 −177.1 (5)
Cl1ii—Pb1—Cl1—Pb1ii 0.0 O1—C6—C7—C12 −174.1 (5)
N1—Pb1—Cl2—Pb1i 94.22 (11) C5—C6—C7—C12 5.7 (8)
O1—Pb1—Cl2—Pb1i 56.71 (16) C12—C7—C8—C9 −1.1 (9)
Cl1—Pb1—Cl2—Pb1i 179.24 (6) C6—C7—C8—C9 −178.3 (6)
Cl2i—Pb1—Cl2—Pb1i 0.0 C7—C8—C9—C10 1.6 (9)
Cl1ii—Pb1—Cl2—Pb1i −90.98 (6) C8—C9—C10—C11 −1.4 (10)
N1—Pb1—O1—C6 −1.9 (4) C9—C10—C11—C12 0.8 (10)
Cl2—Pb1—O1—C6 41.5 (5) C10—C11—C12—C7 −0.3 (8)
Cl1—Pb1—O1—C6 −71.3 (5) C10—C11—C12—C13 179.4 (6)
Cl2i—Pb1—O1—C6 99.9 (5) C8—C7—C12—C11 0.4 (8)
Cl1ii—Pb1—O1—C6 −177.8 (4) C6—C7—C12—C11 177.6 (5)
O1—Pb1—N1—C1 −174.8 (5) C8—C7—C12—C13 −179.3 (5)
Cl2—Pb1—N1—C1 33.3 (4) C6—C7—C12—C13 −2.2 (8)
Cl1—Pb1—N1—C1 −53.9 (4) C5—C4—C13—C14 −179.2 (5)
Cl2i—Pb1—N1—C1 113.5 (4) C3—C4—C13—C14 −0.5 (8)
O1—Pb1—N1—C5 −0.4 (4) C5—C4—C13—C12 0.0 (8)
Cl2—Pb1—N1—C5 −152.2 (4) C3—C4—C13—C12 178.8 (5)
Cl1—Pb1—N1—C5 120.5 (4) C11—C12—C13—C14 −1.3 (9)
Cl2i—Pb1—N1—C5 −72.1 (4) C7—C12—C13—C14 178.4 (5)
C5—N1—C1—C2 −1.5 (9) C11—C12—C13—C4 179.5 (5)
Pb1—N1—C1—C2 173.0 (5) C7—C12—C13—C4 −0.8 (8)
N1—C1—C2—C3 2.0 (10) C17—O3—C14—C13 −177.9 (7)
C1—C2—C3—C16 179.6 (6) C17—O3—C14—C15 4.7 (7)
C1—C2—C3—C4 −0.4 (9) C4—C13—C14—O3 −176.3 (6)
C2—C3—C4—C5 −1.6 (8) C12—C13—C14—O3 4.5 (10)
C16—C3—C4—C5 178.4 (5) C4—C13—C14—C15 0.8 (9)
C2—C3—C4—C13 179.6 (5) C12—C13—C14—C15 −178.5 (6)
C16—C3—C4—C13 −0.4 (8) C17—O2—C15—C16 179.0 (7)
C1—N1—C5—C4 −0.7 (8) C17—O2—C15—C14 −1.8 (8)
Pb1—N1—C5—C4 −175.2 (4) O3—C14—C15—C16 177.3 (6)
C1—N1—C5—C6 176.8 (5) C13—C14—C15—C16 −0.2 (10)
Pb1—N1—C5—C6 2.2 (7) O3—C14—C15—O2 −1.8 (7)
C13—C4—C5—N1 −179.0 (5) C13—C14—C15—O2 −179.4 (6)
C3—C4—C5—N1 2.2 (8) O2—C15—C16—C3 178.3 (6)
C13—C4—C5—C6 3.7 (8) C14—C15—C16—C3 −0.7 (10)
C3—C4—C5—C6 −175.1 (5) C2—C3—C16—C15 −179.0 (6)
Pb1—O1—C6—C7 −176.2 (4) C4—C3—C16—C15 0.9 (9)
Pb1—O1—C6—C5 3.9 (7) C15—O2—C17—O3 4.7 (8)
N1—C5—C6—O1 −4.1 (8) C14—O3—C17—O2 −5.8 (8)
C4—C5—C6—O1 173.4 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2112).

References

  1. Chen, Z.-F., Liu, Y.-C., Liu, L.-M., Wang, H.-S., Qin, S.-H., Wang, B.-L., Bian, H.-D., Yang, B., Fun, H.-G., Liu, H.-G., Liang, H. & Orvig, C. (2009). J. Chem. Soc. Dalton Trans. pp. 262–272. [DOI] [PubMed]
  2. Engelhardt, L. M., Patrick, J. M., Whitaker, C. R. & White, A. H. (1987). Aust. J. Chem.40, 2107–2114.
  3. Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  4. Rigaku (1999). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC & Rigaku (2000). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809051381/ya2112sup1.cif

e-66-00m29-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051381/ya2112Isup2.hkl

e-66-00m29-Isup2.hkl (139.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES