Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):o109. doi: 10.1107/S1600536809052507

N-(3-Methoxy­phen­yl)-tert-butane­sulfinamide

Mrityunjoy Datta a, Alan J Buglass a,*, Mark R J Elsegood b
PMCID: PMC2980236  PMID: 21579998

Abstract

In the title compound, C11H17NO2S, the mol­ecules inter­act in a head-to-tail fashion through pairs of N—H⋯O hydrogen bonds, giving discrete centrosymmetric dimers. The N(H)S(O)tBu fragment is disordered over two sets of positions, with the major component comprising 90.0 (2)%.

Related literature

For N-aryl­alkanesulfinamides, see: Datta et al. (2008, 2009). For N-alkyl­alkanesulfinamides, see: Sato et al. (1975); Ferreira et al. (2005); Schuckmann et al. (1978). For the synthesis, see: Stretter et al. (1969).graphic file with name e-66-0o109-scheme1.jpg

Experimental

Crystal data

  • C11H17NO2S

  • M r = 227.32

  • Monoclinic, Inline graphic

  • a = 12.4068 (13) Å

  • b = 7.3076 (8) Å

  • c = 12.9230 (13) Å

  • β = 93.2992 (15)°

  • V = 1169.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.37 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.911, T max = 0.950

  • 10627 measured reflections

  • 2633 independent reflections

  • 2237 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.117

  • S = 1.07

  • 2633 reflections

  • 166 parameters

  • 149 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052507/ng2698sup1.cif

e-66-0o109-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052507/ng2698Isup2.hkl

e-66-0o109-Isup2.hkl (129.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.24 2.884 (2) 130
N1X—H1X⋯O1Xii 0.88 2.21 2.94 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MD and AJB thank KAIST for financial assistance.

supplementary crystallographic information

Comment

The molecular structure of the title compound (I) exhibits disorder of the N(H)S(O)tBu fragment over two sets of positions. The major component comprises 90.0 (2)% (Fig. 1), in which the N—Caryl bond length is 1.418 (2) Å, similar to that [1.4225 (14) Å] in N-(4-methoxyphenyl)-tert-butanesulfinamide (Datta et al., 2009). The corresponding bond length [1.457 (16) Å] in the minor component is longer, though far less precisely determined. This perhaps suggests weaker delocalization of electrons over N and the aromatic ring, which would correlate with the greater non-coplanarity of the aromatic ring and sulfinyl moiety in this component. In either case, however, the N—Caryl bond is shorter than the N—Calkyl bonds [1.470–1.530 Å] observed in structures of N-alkylalkanesulfinamides (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). The crystal packing of (I) shows head-to-tail interaction through NH···OS hydrogen bonds, forming discrete centrosymmetric dimers, as illustrated for the major component in Fig. 2. The hydrogen bonding data for both components are listed in Table 1. There is no evidence of hydrogen bonding involving the methoxy group, nor of weak CH···.OS hydrogen bonding, as observed in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

Experimental

Compound (I) was prepared by the method of Stretter et al. (1969), using tert-butanesulfinyl chloride (281 mg, 2 mmol) and 3-methoxyaniline (492 mg, 4 mmol) in dry ether (20 ml). After 5 h (with TLC monitoring) the colourless solid amine salt was fitered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, 1% methanol-dichloromethane) provided (I) as colourless crystals (430 mg, 95%), m.p. 367 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in dichloromethane:hexane (1:1) at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3024, 1603, 1496, 1473, 1368, 1278, 1227, 1214, 1156, 1069, 953, 834. 1H NMR (400 MHz, CDCl3 p.p.m. with respect to TMS) δ 7.13 (dd, J = 8.0, 8.5 Hz, 1H), 6.58–6.53 (m, 3H), 5.41 (bs, 1H), 3.75 (d, J = 0.6 Hz, 3H), 1.30 (s, 9H). 13C (100 MHz, CDCl3 p.p.m. with respect to TMS) δ 160.6, 143.3, 130.2, 110.6, 108.4, 104.2, 56.4. 55.2. 22.4. EIMS m/z (%) 228 (MH+, 85), 227 (M+, 25), 213 (17), 171 (MH+- tBu, 100), 123 (MH+ - tBuSO, 6), 108 (MH+ - tBuSONH, 12), 95 (53). To our knowledge, these are the first reported analytical data for (I).

Refinement

H atoms were located in a difference Fourier map and refined geometrically using a riding model. Methyl groups were refined with rotational freedom. Lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C, N). The minor disorder component was refined isotropically. The disorder was modelled with the aid of geometrical and displacement parameter restraints.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the major component of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Centrosymmetric dimer of (I) in the crystal packing of the major component, showing intermolecular hydrogen bonding. Symmetry code i = -x + 1, -y, -z + 1.

Crystal data

C11H17NO2S F(000) = 488
Mr = 227.32 Dx = 1.291 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4390 reflections
a = 12.4068 (13) Å θ = 2.2–27.2°
b = 7.3076 (8) Å µ = 0.26 mm1
c = 12.9230 (13) Å T = 150 K
β = 93.2992 (15)° Block, colourless
V = 1169.7 (2) Å3 0.37 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2633 independent reflections
Radiation source: fine-focus sealed tube 2237 reflections with I > 2σ(I)
graphite Rint = 0.032
ω rotation with narrow frames scans θmax = 27.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −15→16
Tmin = 0.911, Tmax = 0.950 k = −9→9
10627 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.056P)2 + 0.7085P] where P = (Fo2 + 2Fc2)/3
2633 reflections (Δ/σ)max = 0.001
166 parameters Δρmax = 0.62 e Å3
149 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.54940 (10) −0.05258 (18) 0.36978 (10) 0.0229 (3) 0.900 (2)
S1 0.50816 (3) 0.13248 (6) 0.33748 (3) 0.01938 (15) 0.900 (2)
N1 0.42312 (12) 0.2035 (3) 0.42415 (12) 0.0236 (4) 0.900 (2)
H1 0.4482 0.2281 0.4877 0.028* 0.900 (2)
C1 0.31128 (13) 0.2253 (2) 0.39789 (13) 0.0253 (4)
C2 0.24035 (14) 0.2103 (3) 0.47687 (14) 0.0277 (4)
H2 0.2669 0.1811 0.5453 0.033*
C3 0.13034 (14) 0.2383 (3) 0.45550 (14) 0.0289 (4)
O2 0.06872 (11) 0.2258 (3) 0.54029 (11) 0.0462 (4)
C11 −0.04594 (16) 0.2441 (4) 0.52212 (19) 0.0487 (6)
H11A −0.0626 0.3643 0.4916 0.073*
H11B −0.0808 0.2325 0.5879 0.073*
H11C −0.0727 0.1480 0.4744 0.073*
C4 0.08935 (14) 0.2716 (3) 0.35566 (15) 0.0300 (4)
H4 0.0140 0.2867 0.3407 0.036*
C5 0.16122 (16) 0.2821 (3) 0.27816 (15) 0.0384 (5)
H5 0.1340 0.3040 0.2090 0.046*
C6 0.27117 (15) 0.2620 (3) 0.29758 (14) 0.0328 (4)
H6 0.3188 0.2731 0.2429 0.039*
C7 0.62017 (14) 0.2928 (3) 0.36663 (14) 0.0212 (4) 0.900 (2)
C8 0.57870 (17) 0.4793 (3) 0.32914 (18) 0.0314 (5) 0.900 (2)
H8A 0.5209 0.5198 0.3724 0.047* 0.900 (2)
H8B 0.5507 0.4698 0.2569 0.047* 0.900 (2)
H8C 0.6379 0.5682 0.3341 0.047* 0.900 (2)
C9 0.65533 (15) 0.2918 (3) 0.48138 (15) 0.0262 (4) 0.900 (2)
H9A 0.6810 0.1694 0.5015 0.039* 0.900 (2)
H9B 0.5939 0.3248 0.5220 0.039* 0.900 (2)
H9C 0.7137 0.3807 0.4945 0.039* 0.900 (2)
C10 0.7108 (2) 0.2247 (6) 0.3005 (2) 0.0282 (7) 0.900 (2)
H10A 0.7359 0.1048 0.3258 0.042* 0.900 (2)
H10B 0.7710 0.3118 0.3054 0.042* 0.900 (2)
H10C 0.6835 0.2141 0.2281 0.042* 0.900 (2)
O1X 0.5509 (11) 0.5520 (16) 0.3695 (10) 0.032 (3)* 0.100 (2)
S1X 0.5084 (4) 0.3681 (6) 0.3374 (3) 0.0303 (15)* 0.100 (2)
N1X 0.4214 (12) 0.288 (2) 0.4216 (13) 0.026 (4)* 0.100 (2)
H1X 0.4450 0.2833 0.4871 0.032* 0.100 (2)
C7X 0.6173 (12) 0.204 (2) 0.3663 (12) 0.029 (4)* 0.100 (2)
C8X 0.5762 (16) 0.016 (2) 0.3308 (16) 0.034 (4)* 0.100 (2)
H8D 0.5135 −0.0179 0.3694 0.052* 0.100 (2)
H8E 0.6335 −0.0751 0.3436 0.052* 0.100 (2)
H8F 0.5553 0.0197 0.2565 0.052* 0.100 (2)
C9X 0.6514 (16) 0.199 (3) 0.4840 (12) 0.032 (5)* 0.100 (2)
H9D 0.6766 0.3204 0.5065 0.048* 0.100 (2)
H9E 0.7096 0.1097 0.4964 0.048* 0.100 (2)
H9F 0.5893 0.1635 0.5231 0.048* 0.100 (2)
C10X 0.7138 (19) 0.269 (4) 0.308 (2) 0.025 (8)* 0.100 (2)
H10D 0.7374 0.3893 0.3344 0.038* 0.100 (2)
H10E 0.6927 0.2793 0.2338 0.038* 0.100 (2)
H10F 0.7731 0.1813 0.3179 0.038* 0.100 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0234 (6) 0.0218 (7) 0.0233 (6) 0.0001 (5) 0.0005 (5) 0.0005 (5)
S1 0.0152 (2) 0.0251 (2) 0.0179 (2) 0.00068 (16) 0.00179 (14) 0.00043 (17)
N1 0.0151 (8) 0.0366 (11) 0.0193 (8) 0.0024 (7) 0.0019 (6) 0.0015 (7)
C1 0.0168 (8) 0.0337 (10) 0.0254 (9) 0.0007 (6) 0.0014 (6) 0.0012 (7)
C2 0.0215 (9) 0.0385 (10) 0.0230 (8) −0.0003 (7) 0.0009 (6) 0.0003 (7)
C3 0.0189 (8) 0.0400 (10) 0.0282 (9) 0.0001 (7) 0.0047 (7) −0.0026 (7)
O2 0.0164 (7) 0.0900 (13) 0.0327 (8) 0.0034 (7) 0.0060 (5) 0.0010 (7)
C11 0.0156 (9) 0.0850 (19) 0.0464 (12) 0.0009 (10) 0.0083 (8) −0.0025 (12)
C4 0.0180 (8) 0.0380 (10) 0.0336 (10) 0.0047 (7) −0.0021 (7) −0.0017 (8)
C5 0.0284 (10) 0.0603 (14) 0.0259 (9) 0.0128 (9) −0.0022 (7) 0.0034 (9)
C6 0.0243 (9) 0.0504 (12) 0.0241 (9) 0.0076 (8) 0.0050 (7) 0.0068 (8)
C7 0.0165 (8) 0.0226 (10) 0.0251 (9) −0.0010 (7) 0.0064 (6) −0.0021 (8)
C8 0.0282 (10) 0.0240 (10) 0.0431 (12) 0.0031 (8) 0.0109 (9) 0.0028 (9)
C9 0.0187 (9) 0.0324 (12) 0.0277 (10) −0.0042 (8) 0.0026 (7) −0.0061 (8)
C10 0.0195 (12) 0.0340 (18) 0.0321 (14) 0.0012 (10) 0.0109 (8) −0.0028 (13)

Geometric parameters (Å, °)

O1—S1 1.4967 (14) C8—H8B 0.9800
S1—N1 1.6652 (16) C8—H8C 0.9800
S1—C7 1.8401 (19) C9—H9A 0.9800
N1—C1 1.418 (2) C9—H9B 0.9800
N1—H1 0.8800 C9—H9C 0.9800
C1—C6 1.388 (3) C10—H10A 0.9800
C1—C2 1.390 (2) C10—H10B 0.9800
C1—N1X 1.457 (16) C10—H10C 0.9800
C2—C3 1.392 (2) O1X—S1X 1.493 (12)
C2—H2 0.9500 S1X—N1X 1.681 (13)
C3—O2 1.375 (2) S1X—C7X 1.828 (13)
C3—C4 1.381 (3) N1X—H1X 0.8800
O2—C11 1.435 (2) C7X—C8X 1.528 (16)
C11—H11A 0.9800 C7X—C10X 1.528 (16)
C11—H11B 0.9800 C7X—C9X 1.555 (15)
C11—H11C 0.9800 C8X—H8D 0.9800
C4—C5 1.381 (3) C8X—H8E 0.9800
C4—H4 0.9500 C8X—H8F 0.9800
C5—C6 1.381 (3) C9X—H9D 0.9800
C5—H5 0.9500 C9X—H9E 0.9800
C6—H6 0.9500 C9X—H9F 0.9800
C7—C9 1.522 (3) C10X—H10D 0.9800
C7—C8 1.526 (3) C10X—H10E 0.9800
C7—C10 1.534 (3) C10X—H10F 0.9800
C8—H8A 0.9800
O1—S1—N1 108.28 (9) H8B—C8—H8C 109.5
O1—S1—C7 106.04 (8) C7—C9—H9A 109.5
N1—S1—C7 99.44 (9) C7—C9—H9B 109.5
C1—N1—S1 121.54 (13) H9A—C9—H9B 109.5
C1—N1—H1 119.2 C7—C9—H9C 109.5
S1—N1—H1 119.2 H9A—C9—H9C 109.5
C6—C1—C2 119.54 (16) H9B—C9—H9C 109.5
C6—C1—N1 122.58 (16) C7—C10—H10A 109.5
C2—C1—N1 117.88 (15) C7—C10—H10B 109.5
C6—C1—N1X 114.7 (6) H10A—C10—H10B 109.5
C2—C1—N1X 119.7 (6) C7—C10—H10C 109.5
C1—C2—C3 119.86 (16) H10A—C10—H10C 109.5
C1—C2—H2 120.1 H10B—C10—H10C 109.5
C3—C2—H2 120.1 O1X—S1X—N1X 111.3 (8)
O2—C3—C4 124.38 (16) O1X—S1X—C7X 106.8 (8)
O2—C3—C2 114.58 (16) N1X—S1X—C7X 97.7 (8)
C4—C3—C2 121.03 (17) C1—N1X—S1X 127.0 (11)
C3—O2—C11 117.06 (16) C1—N1X—H1X 116.5
O2—C11—H11A 109.5 S1X—N1X—H1X 116.5
O2—C11—H11B 109.5 C8X—C7X—C10X 112.9 (15)
H11A—C11—H11B 109.5 C8X—C7X—C9X 109.8 (14)
O2—C11—H11C 109.5 C10X—C7X—C9X 108.3 (16)
H11A—C11—H11C 109.5 C8X—C7X—S1X 107.4 (11)
H11B—C11—H11C 109.5 C10X—C7X—S1X 106.6 (14)
C5—C4—C3 117.97 (16) C9X—C7X—S1X 111.8 (11)
C5—C4—H4 121.0 C7X—C8X—H8D 109.5
C3—C4—H4 121.0 C7X—C8X—H8E 109.5
C6—C5—C4 122.33 (17) H8D—C8X—H8E 109.5
C6—C5—H5 118.8 C7X—C8X—H8F 109.5
C4—C5—H5 118.8 H8D—C8X—H8F 109.5
C5—C6—C1 119.20 (17) H8E—C8X—H8F 109.5
C5—C6—H6 120.4 C7X—C9X—H9D 109.5
C1—C6—H6 120.4 C7X—C9X—H9E 109.5
C9—C7—C8 112.73 (17) H9D—C9X—H9E 109.5
C9—C7—C10 111.27 (18) C7X—C9X—H9F 109.5
C8—C7—C10 110.95 (19) H9D—C9X—H9F 109.5
C9—C7—S1 111.54 (13) H9E—C9X—H9F 109.5
C8—C7—S1 105.49 (13) C7X—C10X—H10D 109.5
C10—C7—S1 104.40 (18) C7X—C10X—H10E 109.5
C7—C8—H8A 109.5 H10D—C10X—H10E 109.5
C7—C8—H8B 109.5 C7X—C10X—H10F 109.5
H8A—C8—H8B 109.5 H10D—C10X—H10F 109.5
C7—C8—H8C 109.5 H10E—C10X—H10F 109.5
H8A—C8—H8C 109.5
O1—S1—N1—C1 −113.14 (17) N1X—C1—C6—C5 −152.9 (8)
C7—S1—N1—C1 136.38 (17) O1—S1—C7—C9 −59.63 (15)
S1—N1—C1—C6 −26.5 (3) N1—S1—C7—C9 52.62 (15)
S1—N1—C1—C2 154.05 (16) O1—S1—C7—C8 177.66 (12)
S1—N1—C1—N1X −104.9 (15) N1—S1—C7—C8 −70.09 (14)
C6—C1—C2—C3 −2.1 (3) O1—S1—C7—C10 60.64 (17)
N1—C1—C2—C3 177.31 (18) N1—S1—C7—C10 172.89 (16)
N1X—C1—C2—C3 149.0 (8) C6—C1—N1X—S1X −10.0 (16)
C1—C2—C3—O2 −177.99 (17) C2—C1—N1X—S1X −162.5 (9)
C1—C2—C3—C4 3.4 (3) N1—C1—N1X—S1X 105 (2)
C4—C3—O2—C11 1.7 (3) O1X—S1X—N1X—C1 125.7 (13)
C2—C3—O2—C11 −176.92 (19) C7X—S1X—N1X—C1 −122.9 (14)
O2—C3—C4—C5 179.45 (19) O1X—S1X—C7X—C8X −178.2 (12)
C2—C3—C4—C5 −2.1 (3) N1X—S1X—C7X—C8X 66.7 (13)
C3—C4—C5—C6 −0.5 (3) O1X—S1X—C7X—C10X −57.0 (15)
C4—C5—C6—C1 1.6 (3) N1X—S1X—C7X—C10X −172.0 (15)
C2—C1—C6—C5 −0.3 (3) O1X—S1X—C7X—C9X 61.2 (14)
N1—C1—C6—C5 −179.7 (2) N1X—S1X—C7X—C9X −53.9 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.24 2.884 (2) 130
N1X—H1X···O1Xii 0.88 2.21 2.94 (2) 141

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2698).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2823. [DOI] [PMC free article] [PubMed]
  3. Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393. [DOI] [PMC free article] [PubMed]
  4. Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J.11, 5269–5278. [DOI] [PubMed]
  5. Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.
  6. Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.
  7. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber.102, 3357–3363.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052507/ng2698sup1.cif

e-66-0o109-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052507/ng2698Isup2.hkl

e-66-0o109-Isup2.hkl (129.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES