Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 19;66(Pt 1):o211. doi: 10.1107/S1600536809052155

Tris(4-tert-butyl­phen­yl)phosphine oxide

Yin-Ge Hao a, Jin-Cai Yao b, Jun-Xian Li a, Yu-Xin He a, Yu-Qing Zhang a,*
PMCID: PMC2980249  PMID: 21580096

Abstract

In the title compound, C30H39OP, the P=O bond length is 1.4866 (12) Å and the P—C bond lengths range from 1.804 (2) to 1.808 (13) Å. The molecle is located on a crystallographic mirror plane. The methyl groups of one tert-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio.

Related literature

For applications of phosphine ligands in palladium-catalysed syntheses, see: Buchwald et al. (2006); Surry & Buchwald (2008); Xu et al. (2009). For related structures, see: Baures & Silverton (1990); Shawkataly et al. (2009). For the synthesis, see: Issleib & Brack (1954).graphic file with name e-66-0o211-scheme1.jpg

Experimental

Crystal data

  • C30H39OP

  • M r = 446.58

  • Orthorhombic, Inline graphic

  • a = 11.7986 (10) Å

  • b = 20.9246 (18) Å

  • c = 10.5204 (9) Å

  • V = 2597.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 294 K

  • 0.45 × 0.43 × 0.42 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.946, T max = 0.949

  • 17327 measured reflections

  • 2485 independent reflections

  • 2143 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.117

  • S = 1.03

  • 2485 reflections

  • 161 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052155/si2225sup1.cif

e-66-0o211-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052155/si2225Isup2.hkl

e-66-0o211-Isup2.hkl (122.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Fund for Distinguished Talents of Henan Province (No. 074200510019) for financial support of this work.

supplementary crystallographic information

Comment

Arylphosphines are the most frequently used as ligands in transition metal catalysis (Buchwald et al., 2006; Surry & Buchwald 2008; Xu et al., 2009). While preparing tris(4-tert-butylphenyl) phosphines, we have obtained the title compound as a side product.

The title compound, C30H39OP, has a P=O bond length of 1.4866 (12) Å. The P—C bond lengths range from 1.804 (2) to 1.808 (13) Å. It is located on a crystallographic mirror plane. All the bond distances and angles in the structure are within normal ranges, similar to those found in the related compounds (Baures & Silverton 1990; Shawkataly et al., 2009). The methyl groups of one tert-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio.

Experimental

The title compound was obtained as a side product from the reaction of PCl3 and 4-C(CH3)3-C6H4—MgBr as described in the literature (Issleib & Brack 1954) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

The methyl groups of one tert-butyl group are disordered over two sites, occupancies were refined and converged to 0.776 (4):0.224 (4). The rigid-group mode was used in refinement for the disordered components, and atomic displacement parameters were constrained for disordered components. H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level (Symmetry code A: x, -y + 1/2, z).

Crystal data

C30H39OP Dx = 1.142 Mg m3
Mr = 446.58 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 5668 reflections
a = 11.7986 (10) Å θ = 2.6–28.1°
b = 20.9246 (18) Å µ = 0.13 mm1
c = 10.5204 (9) Å T = 294 K
V = 2597.3 (4) Å3 Block, colourless
Z = 4 0.45 × 0.43 × 0.42 mm
F(000) = 968

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2485 independent reflections
Radiation source: fine-focus sealed tube 2143 reflections with I > 2σ(I)
graphite Rint = 0.027
phi and ω scans θmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.946, Tmax = 0.949 k = −25→25
17327 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0575P)2 + 1.3437P] where P = (Fo2 + 2Fc2)/3
2485 reflections (Δ/σ)max < 0.001
161 parameters Δρmax = 0.38 e Å3
18 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.77025 (14) 0.31883 (8) 0.30317 (15) 0.0298 (4)
C2 0.66436 (14) 0.33374 (8) 0.35431 (16) 0.0340 (4)
H2 0.6014 0.3093 0.3328 0.041*
C3 0.65284 (15) 0.38473 (8) 0.43698 (17) 0.0370 (4)
H3 0.5814 0.3944 0.4689 0.044*
C4 0.74507 (15) 0.42213 (8) 0.47393 (16) 0.0342 (4)
C5 0.84902 (15) 0.40734 (9) 0.42064 (17) 0.0400 (4)
H5 0.9119 0.4319 0.4419 0.048*
C6 0.86199 (14) 0.35678 (9) 0.33627 (17) 0.0381 (4)
H6 0.9329 0.3483 0.3016 0.046*
C7 0.72901 (17) 0.47686 (9) 0.56942 (18) 0.0422 (4)
C8 0.8417 (2) 0.50323 (12) 0.6179 (2) 0.0656 (7)
H8A 0.8839 0.4696 0.6579 0.098*
H8B 0.8276 0.5366 0.6784 0.098*
H8C 0.8844 0.5201 0.5478 0.098*
C9 0.6599 (2) 0.45282 (11) 0.6836 (2) 0.0654 (7)
H9A 0.5866 0.4390 0.6553 0.098*
H9B 0.6513 0.4868 0.7443 0.098*
H9C 0.6988 0.4176 0.7228 0.098*
C10 0.6641 (2) 0.53167 (10) 0.5049 (2) 0.0592 (6)
H10A 0.7100 0.5498 0.4387 0.089*
H10B 0.6467 0.5640 0.5667 0.089*
H10C 0.5950 0.5155 0.4691 0.089*
C11 0.6881 (2) 0.2500 0.0829 (2) 0.0299 (5)
C12 0.64869 (17) 0.30649 (9) 0.03060 (18) 0.0432 (5)
H12 0.6743 0.3453 0.0627 0.052*
C13 0.57171 (17) 0.30618 (9) −0.06884 (18) 0.0453 (5)
H13 0.5472 0.3450 −0.1021 0.054*
C14 0.5301 (2) 0.2500 −0.1204 (2) 0.0342 (5)
C15 0.4417 (2) 0.2500 −0.2271 (2) 0.0433 (6)
C16 0.3243 (4) 0.2500 −0.1637 (5) 0.0934 (17) 0.776 (4)
H16A 0.3112 0.2906 −0.1240 0.140* 0.776 (4)
H16B 0.2671 0.2500 −0.2269 0.140* 0.776 (4)
C17 0.4487 (4) 0.3089 (2) −0.3094 (4) 0.1069 (16) 0.776 (4)
H17A 0.3956 0.3054 −0.3782 0.160* 0.776 (4)
H17B 0.5240 0.3129 −0.3429 0.160* 0.776 (4)
H17C 0.4309 0.3460 −0.2594 0.160* 0.776 (4)
C18 0.5182 (14) 0.2500 −0.3521 (17) 0.0934 (17) 0.224 (4)
H18A 0.4698 0.2500 −0.4229 0.140* 0.224 (4)
H18B 0.5516 0.2086 −0.3543 0.140* 0.224 (4)
C19 0.3708 (5) 0.3102 (7) −0.2313 (5) 0.1069 (16) 0.224 (4)
H19A 0.3178 0.3074 −0.3003 0.160* 0.224 (4)
H19B 0.4193 0.3465 −0.2436 0.160* 0.224 (4)
H19C 0.3303 0.3148 −0.1526 0.160* 0.224 (4)
O1 0.91419 (9) 0.2500 (7) 0.15255 (12) 0.0397 (4)
P1 0.79669 (5) 0.2500 (7) 0.20357 (5) 0.02885 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0308 (8) 0.0304 (8) 0.0281 (8) −0.0013 (7) −0.0028 (6) 0.0019 (7)
C2 0.0283 (8) 0.0345 (9) 0.0393 (9) −0.0042 (7) −0.0036 (7) −0.0025 (7)
C3 0.0323 (9) 0.0385 (9) 0.0401 (9) 0.0005 (7) 0.0026 (7) −0.0037 (8)
C4 0.0393 (9) 0.0304 (9) 0.0327 (9) −0.0023 (7) −0.0031 (7) 0.0006 (7)
C5 0.0341 (9) 0.0405 (10) 0.0455 (10) −0.0099 (8) −0.0034 (8) −0.0057 (8)
C6 0.0299 (9) 0.0429 (10) 0.0414 (9) −0.0036 (7) 0.0022 (7) −0.0047 (8)
C7 0.0487 (11) 0.0362 (9) 0.0418 (10) −0.0038 (8) 0.0006 (8) −0.0080 (8)
C8 0.0646 (15) 0.0595 (14) 0.0728 (15) −0.0078 (12) −0.0120 (12) −0.0304 (12)
C9 0.0945 (19) 0.0592 (14) 0.0425 (11) −0.0148 (13) 0.0137 (12) −0.0147 (10)
C10 0.0685 (14) 0.0424 (12) 0.0665 (14) 0.0090 (10) 0.0018 (12) −0.0086 (11)
C11 0.0328 (12) 0.0310 (12) 0.0260 (11) 0.000 0.0004 (9) 0.000
C12 0.0580 (12) 0.0298 (9) 0.0418 (10) −0.0022 (8) −0.0149 (9) −0.0015 (7)
C13 0.0597 (12) 0.0328 (10) 0.0434 (10) 0.0061 (9) −0.0153 (9) 0.0027 (8)
C14 0.0334 (13) 0.0424 (13) 0.0270 (11) 0.000 0.0005 (10) 0.000
C15 0.0486 (16) 0.0461 (15) 0.0352 (14) 0.000 −0.0122 (12) 0.000
C16 0.055 (3) 0.157 (5) 0.068 (3) 0.000 −0.026 (2) 0.000
C17 0.121 (3) 0.117 (3) 0.083 (3) −0.045 (3) −0.065 (2) 0.053 (2)
C18 0.055 (3) 0.157 (5) 0.068 (3) 0.000 −0.026 (2) 0.000
C19 0.121 (3) 0.117 (3) 0.083 (3) −0.045 (3) −0.065 (2) 0.053 (2)
O1 0.0300 (9) 0.0473 (10) 0.0419 (10) 0.000 0.0059 (7) 0.000
P1 0.0270 (3) 0.0314 (3) 0.0282 (3) 0.000 0.0000 (2) 0.000

Geometric parameters (Å, °)

C1—C6 1.387 (2) C11—P1 1.804 (2)
C1—C2 1.396 (2) C12—C13 1.385 (3)
C1—P1 1.808 (13) C12—H12 0.9300
C2—C3 1.383 (2) C13—C14 1.384 (2)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.396 (2) C14—C13i 1.384 (2)
C3—H3 0.9300 C14—C15 1.533 (3)
C4—C5 1.384 (3) C15—C17i 1.509 (4)
C4—C7 1.535 (2) C15—C17 1.509 (4)
C5—C6 1.389 (2) C15—C19i 1.512 (13)
C5—H5 0.9300 C15—C19 1.512 (13)
C6—H6 0.9300 C15—C16 1.537 (6)
C7—C8 1.527 (3) C15—C18 1.596 (19)
C7—C9 1.537 (3) C16—H16A 0.9600
C7—C10 1.537 (3) C16—H16B 0.9471
C8—H8A 0.9600 C17—H17A 0.9600
C8—H8B 0.9600 C17—H17B 0.9600
C8—H8C 0.9600 C17—H17C 0.9600
C9—H9A 0.9600 C18—H18A 0.9378
C9—H9B 0.9600 C18—H18B 0.9517
C9—H9C 0.9600 C19—H19A 0.9600
C10—H10A 0.9600 C19—H19B 0.9600
C10—H10B 0.9600 C19—H19C 0.9600
C10—H10C 0.9600 O1—P1 1.4866 (12)
C11—C12i 1.384 (2) P1—C1i 1.808 (13)
C11—C12 1.384 (2)
C6—C1—C2 118.28 (15) C14—C13—H13 118.9
C6—C1—P1 117.83 (17) C12—C13—H13 118.9
C2—C1—P1 123.78 (18) C13—C14—C13i 116.2 (2)
C3—C2—C1 120.19 (15) C13—C14—C15 121.88 (11)
C3—C2—H2 119.9 C13i—C14—C15 121.88 (11)
C1—C2—H2 119.9 C17i—C15—C17 109.6 (4)
C2—C3—C4 122.08 (16) C17i—C15—C19i 48.2 (3)
C2—C3—H3 119.0 C17—C15—C19i 133.9 (3)
C4—C3—H3 119.0 C17i—C15—C19 133.9 (3)
C5—C4—C3 116.92 (16) C17—C15—C19 48.2 (3)
C5—C4—C7 122.78 (16) C19i—C15—C19 112.7 (7)
C3—C4—C7 120.30 (16) C17i—C15—C14 112.50 (18)
C4—C5—C6 121.79 (16) C17—C15—C14 112.50 (18)
C4—C5—H5 119.1 C19i—C15—C14 113.5 (2)
C6—C5—H5 119.1 C19—C15—C14 113.5 (2)
C1—C6—C5 120.69 (16) C17i—C15—C16 107.4 (3)
C1—C6—H6 119.7 C17—C15—C16 107.4 (3)
C5—C6—H6 119.7 C19i—C15—C16 60.9 (4)
C8—C7—C4 112.37 (16) C19—C15—C16 60.9 (4)
C8—C7—C9 108.61 (18) C14—C15—C16 107.2 (2)
C4—C7—C9 109.45 (15) C17i—C15—C18 59.7 (3)
C8—C7—C10 108.16 (17) C17—C15—C18 59.7 (3)
C4—C7—C10 109.22 (15) C19i—C15—C18 106.8 (4)
C9—C7—C10 108.98 (19) C19—C15—C18 106.8 (4)
C7—C8—H8A 109.5 C14—C15—C18 102.6 (6)
C7—C8—H8B 109.5 C16—C15—C18 150.1 (6)
H8A—C8—H8B 109.5 C15—C16—H16A 109.5
C7—C8—H8C 109.5 C15—C16—H16B 109.7
H8A—C8—H8C 109.5 H16A—C16—H16B 101.0
H8B—C8—H8C 109.5 C15—C17—H17A 109.5
C7—C9—H9A 109.5 C15—C17—H17B 109.5
C7—C9—H9B 109.5 C15—C17—H17C 109.5
H9A—C9—H9B 109.5 C15—C18—H18A 108.1
C7—C9—H9C 109.5 C15—C18—H18B 104.7
H9A—C9—H9C 109.5 H18A—C18—H18B 103.5
H9B—C9—H9C 109.5 C15—C19—H16A 90.7
C7—C10—H10A 109.5 C15—C19—H19A 109.5
C7—C10—H10B 109.5 C15—C19—H19B 109.5
H10A—C10—H10B 109.5 H19A—C19—H19B 109.5
C7—C10—H10C 109.5 C15—C19—H19C 109.5
H10A—C10—H10C 109.5 H19A—C19—H19C 109.5
H10B—C10—H10C 109.5 H19B—C19—H19C 109.5
C12i—C11—C12 117.3 (2) O1—P1—C1 111.72 (19)
C12i—C11—P1 121.2 (5) O1—P1—C11 114.10 (9)
C12—C11—P1 121.2 (5) C1—P1—C11 106.6 (5)
C11—C12—C13 121.07 (17) O1—P1—C1i 111.72 (16)
C11—C12—H12 119.5 C1—P1—C1i 105.59 (10)
C13—C12—H12 119.5 C11—P1—C1i 106.6 (5)
C14—C13—C12 122.14 (17)
C6—C1—C2—C3 −0.8 (2) C13—C14—C15—C17 28.3 (4)
P1—C1—C2—C3 175.4 (4) C13i—C14—C15—C17 −152.7 (3)
C1—C2—C3—C4 −1.1 (3) C13—C14—C15—C19i −154.7 (4)
C2—C3—C4—C5 2.1 (3) C13i—C14—C15—C19i 24.3 (5)
C2—C3—C4—C7 −177.92 (16) C13—C14—C15—C19 −24.3 (5)
C3—C4—C5—C6 −1.4 (3) C13i—C14—C15—C19 154.7 (4)
C7—C4—C5—C6 178.71 (16) C13—C14—C15—C16 −89.5 (2)
C2—C1—C6—C5 1.5 (3) C13i—C14—C15—C16 89.5 (2)
P1—C1—C6—C5 −174.9 (3) C13—C14—C15—C18 90.5 (2)
C4—C5—C6—C1 −0.5 (3) C13i—C14—C15—C18 −90.5 (2)
C5—C4—C7—C8 −11.6 (3) C6—C1—P1—O1 −9.6 (3)
C3—C4—C7—C8 168.51 (18) C2—C1—P1—O1 174.21 (16)
C5—C4—C7—C9 −132.3 (2) C6—C1—P1—C11 −134.9 (3)
C3—C4—C7—C9 47.8 (2) C2—C1—P1—C11 48.9 (6)
C5—C4—C7—C10 108.5 (2) C6—C1—P1—C1i 112.0 (2)
C3—C4—C7—C10 −71.5 (2) C2—C1—P1—C1i −64.1 (2)
C12i—C11—C12—C13 0.9 (4) C12i—C11—P1—O1 86.9 (3)
P1—C11—C12—C13 174.97 (17) C12—C11—P1—O1 −86.9 (3)
C11—C12—C13—C14 0.3 (3) C12i—C11—P1—C1 −149.3 (4)
C12—C13—C14—C13i −1.4 (4) C12—C11—P1—C1 36.9 (4)
C12—C13—C14—C15 177.7 (2) C12i—C11—P1—C1i −36.9 (4)
C13—C14—C15—C17i 152.7 (3) C12—C11—P1—C1i 149.3 (4)
C13i—C14—C15—C17i −28.3 (4)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2225).

References

  1. Baures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715–717. [DOI] [PubMed]
  2. Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Buchwald, S. L., Mauger, C., Mignani, G. & Scholz, U. (2006). Adv. Synth. Catal.348, 23–39.
  4. Issleib, V. K. & Brack, A. (1954). Z. Anorg. Allg. Chem.277, 258–270.
  5. Shawkataly, O. bin, Pankhi, M. A. A., Mohamed-Ibrahim, M. I., Hamdan, M. R. & Fun, H.-K. (2009). Acta Cryst. E65, o1080. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Surry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed.47, 6338–6361. [DOI] [PMC free article] [PubMed]
  10. Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909–1916.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052155/si2225sup1.cif

e-66-0o211-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052155/si2225Isup2.hkl

e-66-0o211-Isup2.hkl (122.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES