Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):m45. doi: 10.1107/S1600536809051150

Aqua­chlorido{μ-6,6′-dieth­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}copper(II)sodium(I) N,N-dimethyl­formamide solvate

Xiao-Jian Ma a,*
PMCID: PMC2980255  PMID: 21579943

Abstract

In the heterometallic dinuclear title compound, [CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO, the CuII ion is coord­inated in a square-planar geometry by two N atoms and two O atoms of the 6,6′-dieth­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolate ligand. The NaI ion is hexa­coordinated by four O atoms of the ligand, defining the equatorial plan, and by one O atom of the water mol­ecule and one Cl atom occuping axial positions. The CuII and NaI ions are bridged by two phenolate O atoms.

Related literature

For related heteronuclear complexes, see: Karlin (1993); Ni et al. (2005). For related structures, see: Bian (2008); Xiao & Zhu (2003). For the synthesis of 6,6′-dieth­yloxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenol and its Cu complex, see: Lo et al. (2004); Sui et al. (2007).graphic file with name e-66-00m45-scheme1.jpg

Experimental

Crystal data

  • [CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO

  • M r = 615.53

  • Monoclinic, Inline graphic

  • a = 12.2528 (17) Å

  • b = 19.566 (3) Å

  • c = 12.4901 (17) Å

  • β = 111.653 (2)°

  • V = 2783.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.872, T max = 0.928

  • 13672 measured reflections

  • 4903 independent reflections

  • 4233 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.092

  • S = 1.07

  • 4903 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051150/is2489sup1.cif

e-66-00m45-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051150/is2489Isup2.hkl

e-66-00m45-Isup2.hkl (235.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China and the Post-Doctoral Innovation Project of Shandong Province.

supplementary crystallographic information

Comment

Heterometallic complexes have been intensively studied owing to their unique physical and chemical properties (Ni et al., 2005). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). Therefore, investigation of the synthesis and the crystal structures of these heterometallic compounds is necessary in order to further widening the application of the compounds. Herein, a novel heterometallic nuclear (CuIINaI) compound has been obtained by step-by-step method and its structure is depicted.

As shown in Fig.1, the compound I is a dinuclear neutral complex with a planar square configuration. The Cu(II) atom is coordinated in a planar square geometry with the basal square formed by two nitrogen atoms and two oxygen atoms from the 6,6'-diethyloxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolate (L) ligand. The Na(I) atom is coordinated by four oxygen atoms from the ligand, one oxygen atom from water and one chlorine atom. The bond lengths of Cu—O, Cu—N and Na—Cl are normal (Xiao et al., 2003).

Experimental

The H2L ligand and complex CuL was synthesized according to the previous literature (Lo et al., 2004; Sui et al. 2007). The compound I was obtained by allowing the mixure of CuL (0.047 g, 0.1 mmol) and NaCl (0.006 g, 0.1 mmol) being stirred in the DMF solution at room temperature for 1 h, then filtered, suitable brown crystals were obtained via slow evaporation of the filtrate at room temperature (yield: about 45%)

Refinement

All H-atoms bound to the C atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl atoms. The H atoms of the water molecule were contrained, with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO F(000) = 1276
Mr = 615.53 Dx = 1.469 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7372 reflections
a = 12.2528 (17) Å θ = 2.3–27.5°
b = 19.566 (3) Å µ = 0.94 mm1
c = 12.4901 (17) Å T = 298 K
β = 111.653 (2)° Needle, brown
V = 2783.1 (7) Å3 0.15 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4903 independent reflections
Radiation source: fine-focus sealed tube 4233 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 0 pixels mm-1 θmax = 25.0°, θmin = 2.0°
φ and ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −23→23
Tmin = 0.872, Tmax = 0.928 l = −12→14
13672 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 0.6422P] where P = (Fo2 + 2Fc2)/3
4903 reflections (Δ/σ)max < 0.001
354 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4298 (3) 0.29377 (13) 0.0350 (3) 0.0753 (8)
H1A 0.4592 0.3390 0.0331 0.113*
H1B 0.4629 0.2761 0.1121 0.113*
H1C 0.3458 0.2952 0.0108 0.113*
C2 0.4633 (2) 0.24849 (10) −0.0442 (2) 0.0472 (5)
H2A 0.4304 0.2659 −0.1224 0.057*
H2B 0.5480 0.2467 −0.0207 0.057*
C3 0.44513 (16) 0.13019 (10) −0.09867 (16) 0.0350 (4)
C4 0.51898 (18) 0.13645 (11) −0.15763 (17) 0.0426 (5)
H4 0.5511 0.1789 −0.1626 0.051*
C5 0.5466 (2) 0.07961 (12) −0.21056 (19) 0.0488 (5)
H5 0.5972 0.0843 −0.2502 0.059*
C6 0.4997 (2) 0.01743 (11) −0.20428 (19) 0.0439 (5)
H6 0.5205 −0.0204 −0.2377 0.053*
C7 0.41968 (17) 0.00950 (10) −0.14769 (17) 0.0337 (4)
C8 0.39040 (16) 0.06668 (9) −0.09376 (15) 0.0314 (4)
C9 0.37331 (17) −0.05756 (10) −0.14566 (16) 0.0352 (4)
H9 0.4006 −0.0926 −0.1795 0.042*
C10 0.25323 (16) −0.14097 (10) −0.10326 (16) 0.0356 (4)
C11 0.27395 (18) −0.19532 (10) −0.16551 (18) 0.0430 (5)
H11 0.3185 −0.1886 −0.2109 0.052*
C12 0.2284 (2) −0.25866 (11) −0.1596 (2) 0.0508 (6)
H12 0.2427 −0.2949 −0.2007 0.061*
C13 0.1616 (2) −0.26903 (11) −0.0931 (2) 0.0522 (6)
H13 0.1323 −0.3124 −0.0891 0.063*
C14 0.13774 (19) −0.21583 (11) −0.03232 (18) 0.0459 (5)
H14 0.0917 −0.2232 0.0114 0.055*
C15 0.18307 (17) −0.15112 (10) −0.03704 (16) 0.0363 (4)
C16 0.09870 (17) −0.09228 (10) 0.08093 (17) 0.0380 (4)
H16 0.0617 −0.1331 0.0855 0.046*
C17 0.07786 (17) −0.03460 (11) 0.14138 (17) 0.0385 (4)
C18 0.00260 (19) −0.04354 (13) 0.20363 (18) 0.0487 (5)
H18 −0.0308 −0.0861 0.2043 0.058*
C19 −0.0213 (2) 0.00910 (13) 0.2621 (2) 0.0526 (6)
H19 −0.0707 0.0021 0.3025 0.063*
C20 0.02749 (19) 0.07394 (13) 0.26241 (18) 0.0483 (5)
H20 0.0110 0.1095 0.3035 0.058*
C21 0.09936 (17) 0.08496 (11) 0.20221 (16) 0.0387 (4)
C22 0.12742 (16) 0.03082 (10) 0.14010 (16) 0.0351 (4)
C23 0.1425 (2) 0.20234 (11) 0.26047 (19) 0.0492 (5)
H23A 0.1826 0.1917 0.3414 0.059*
H23B 0.0612 0.2130 0.2472 0.059*
C24 0.2003 (2) 0.26168 (12) 0.2272 (2) 0.0617 (7)
H24A 0.1974 0.3009 0.2723 0.092*
H24B 0.1598 0.2717 0.1469 0.092*
H24C 0.2806 0.2505 0.2409 0.092*
C25 0.3559 (3) 0.03387 (18) 0.4305 (3) 0.0904 (11)
H25 0.3942 0.0080 0.3925 0.108*
C26 0.3037 (6) −0.0754 (2) 0.4803 (5) 0.169 (2)
H26A 0.2303 −0.0927 0.4274 0.253*
H26B 0.3190 −0.0942 0.5554 0.253*
H26C 0.3657 −0.0882 0.4546 0.253*
C27 0.2338 (4) 0.0311 (3) 0.5408 (3) 0.139 (2)
H27A 0.2853 0.0446 0.6165 0.208*
H27B 0.1747 0.0008 0.5468 0.208*
H27C 0.1970 0.0709 0.4975 0.208*
N1 0.29705 (13) −0.07355 (8) −0.10098 (13) 0.0328 (3)
N2 0.16488 (13) −0.09243 (8) 0.02039 (13) 0.0346 (4)
N3 0.2978 (2) −0.00202 (13) 0.4854 (2) 0.0744 (7)
O1 0.41778 (13) 0.18169 (7) −0.03841 (13) 0.0450 (3)
O2 0.31963 (12) 0.06507 (7) −0.03795 (12) 0.0401 (3)
O3 0.19590 (12) 0.04606 (7) 0.08560 (12) 0.0410 (3)
O4 0.14894 (13) 0.14563 (7) 0.19102 (12) 0.0466 (4)
O5 0.43276 (14) 0.15357 (8) 0.24781 (14) 0.0584 (4)
H5A 0.4787 0.1878 0.2615 0.088*
H5B 0.4225 0.1437 0.3097 0.088*
O6 0.3640 (2) 0.09160 (14) 0.4248 (2) 0.1041 (8)
Cu1 0.243871 (19) −0.012818 (12) −0.008330 (19) 0.03398 (10)
Na1 0.27089 (7) 0.15365 (4) 0.06022 (7) 0.0437 (2)
Cl1 0.10362 (6) 0.23100 (3) −0.10680 (6) 0.06409 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.084 (2) 0.0393 (14) 0.112 (2) −0.0106 (13) 0.0475 (18) −0.0153 (14)
C2 0.0468 (12) 0.0323 (11) 0.0554 (13) −0.0061 (9) 0.0103 (10) 0.0059 (9)
C3 0.0335 (10) 0.0338 (10) 0.0367 (10) 0.0046 (8) 0.0116 (8) 0.0060 (8)
C4 0.0426 (11) 0.0420 (11) 0.0472 (11) −0.0018 (9) 0.0211 (9) 0.0092 (9)
C5 0.0515 (13) 0.0535 (14) 0.0535 (13) −0.0004 (11) 0.0335 (11) 0.0037 (10)
C6 0.0482 (12) 0.0449 (12) 0.0468 (12) 0.0051 (10) 0.0273 (10) −0.0013 (9)
C7 0.0338 (10) 0.0343 (10) 0.0327 (10) 0.0048 (8) 0.0119 (8) 0.0035 (8)
C8 0.0301 (9) 0.0321 (10) 0.0327 (9) 0.0031 (8) 0.0125 (8) 0.0043 (8)
C9 0.0373 (10) 0.0332 (10) 0.0346 (10) 0.0057 (8) 0.0126 (8) −0.0010 (8)
C10 0.0321 (10) 0.0312 (10) 0.0365 (10) 0.0016 (8) 0.0046 (8) −0.0003 (8)
C11 0.0410 (11) 0.0382 (11) 0.0438 (11) 0.0034 (9) 0.0088 (9) −0.0067 (9)
C12 0.0501 (13) 0.0339 (11) 0.0555 (13) 0.0027 (10) 0.0042 (11) −0.0101 (10)
C13 0.0553 (14) 0.0308 (11) 0.0575 (14) −0.0068 (10) 0.0056 (11) −0.0018 (10)
C14 0.0453 (12) 0.0382 (12) 0.0480 (12) −0.0072 (9) 0.0100 (10) 0.0025 (9)
C15 0.0347 (10) 0.0307 (10) 0.0365 (10) −0.0019 (8) 0.0049 (8) 0.0011 (8)
C16 0.0333 (10) 0.0369 (11) 0.0423 (11) −0.0063 (8) 0.0121 (9) 0.0054 (8)
C17 0.0318 (10) 0.0471 (12) 0.0360 (10) −0.0022 (9) 0.0117 (8) 0.0031 (9)
C18 0.0420 (12) 0.0627 (15) 0.0455 (12) −0.0087 (11) 0.0208 (10) 0.0049 (11)
C19 0.0457 (13) 0.0757 (17) 0.0469 (13) −0.0026 (12) 0.0295 (11) 0.0030 (11)
C20 0.0421 (12) 0.0668 (15) 0.0392 (11) 0.0066 (11) 0.0188 (9) −0.0046 (10)
C21 0.0335 (10) 0.0485 (12) 0.0345 (10) 0.0044 (9) 0.0129 (8) 0.0000 (9)
C22 0.0306 (10) 0.0414 (11) 0.0327 (10) 0.0015 (8) 0.0107 (8) 0.0013 (8)
C23 0.0512 (13) 0.0496 (13) 0.0485 (12) 0.0094 (10) 0.0202 (10) −0.0140 (10)
C24 0.0727 (17) 0.0460 (14) 0.0739 (16) 0.0052 (12) 0.0359 (14) −0.0157 (12)
C25 0.100 (3) 0.063 (2) 0.086 (2) −0.0051 (19) 0.010 (2) −0.0020 (17)
C26 0.197 (5) 0.077 (3) 0.176 (5) −0.047 (3) 0.004 (4) 0.027 (3)
C27 0.088 (3) 0.255 (6) 0.069 (2) 0.035 (4) 0.024 (2) 0.023 (3)
N1 0.0344 (8) 0.0278 (8) 0.0354 (8) 0.0014 (6) 0.0119 (7) −0.0012 (6)
N2 0.0334 (8) 0.0309 (8) 0.0380 (9) −0.0028 (7) 0.0114 (7) 0.0009 (7)
N3 0.0758 (17) 0.0785 (17) 0.0646 (15) −0.0128 (13) 0.0209 (13) 0.0074 (12)
O1 0.0520 (9) 0.0299 (7) 0.0622 (9) −0.0036 (6) 0.0318 (7) −0.0011 (6)
O2 0.0459 (8) 0.0293 (7) 0.0566 (8) −0.0021 (6) 0.0323 (7) −0.0029 (6)
O3 0.0459 (8) 0.0350 (7) 0.0535 (8) −0.0052 (6) 0.0316 (7) −0.0077 (6)
O4 0.0569 (9) 0.0404 (8) 0.0520 (9) 0.0023 (7) 0.0311 (7) −0.0096 (6)
O5 0.0619 (10) 0.0516 (10) 0.0621 (10) −0.0085 (8) 0.0234 (8) −0.0081 (8)
O6 0.114 (2) 0.0975 (19) 0.1034 (18) −0.0205 (16) 0.0428 (15) 0.0090 (15)
Cu1 0.03799 (16) 0.02756 (15) 0.04243 (16) −0.00246 (9) 0.02191 (12) −0.00293 (9)
Na1 0.0476 (5) 0.0339 (4) 0.0542 (5) 0.0006 (3) 0.0243 (4) −0.0038 (4)
Cl1 0.0566 (4) 0.0601 (4) 0.0712 (4) 0.0090 (3) 0.0184 (3) 0.0195 (3)

Geometric parameters (Å, °)

C1—C2 1.494 (4) C18—H18 0.9300
C1—H1A 0.9600 C19—C20 1.402 (3)
C1—H1B 0.9600 C19—H19 0.9300
C1—H1C 0.9600 C20—C21 1.370 (3)
C2—O1 1.433 (2) C20—H20 0.9300
C2—H2A 0.9700 C21—O4 1.364 (3)
C2—H2B 0.9700 C21—C22 1.428 (3)
C3—C4 1.367 (3) C22—O3 1.295 (2)
C3—O1 1.371 (2) C23—O4 1.428 (2)
C3—C8 1.424 (3) C23—C24 1.496 (3)
C4—C5 1.397 (3) C23—H23A 0.9700
C4—H4 0.9300 C23—H23B 0.9700
C5—C6 1.360 (3) C24—H24A 0.9600
C5—H5 0.9300 C24—H24B 0.9600
C6—C7 1.412 (3) C24—H24C 0.9600
C6—H6 0.9300 C25—O6 1.138 (4)
C7—C8 1.419 (3) C25—N3 1.353 (5)
C7—C9 1.434 (3) C25—H25 0.9300
C8—O2 1.298 (2) C26—N3 1.440 (5)
C9—N1 1.291 (3) C26—H26A 0.9600
C9—H9 0.9300 C26—H26B 0.9600
C10—C11 1.395 (3) C26—H26C 0.9600
C10—C15 1.410 (3) C27—N3 1.384 (6)
C10—N1 1.420 (2) C27—H27A 0.9600
C11—C12 1.372 (3) C27—H27B 0.9600
C11—H11 0.9300 C27—H27C 0.9600
C12—C13 1.379 (4) N1—Cu1 1.9320 (15)
C12—H12 0.9300 N2—Cu1 1.9360 (15)
C13—C14 1.382 (3) O1—Na1 2.5874 (16)
C13—H13 0.9300 O2—Cu1 1.8907 (13)
C14—C15 1.393 (3) O2—Na1 2.3247 (15)
C14—H14 0.9300 O3—Cu1 1.8862 (13)
C15—N2 1.414 (3) O3—Na1 2.3646 (16)
C16—N2 1.297 (3) O4—Na1 2.5938 (16)
C16—C17 1.432 (3) O5—Na1 2.4483 (18)
C16—H16 0.9300 O5—H5A 0.8500
C17—C18 1.419 (3) O5—H5B 0.8499
C17—C22 1.419 (3) Cu1—Na1 3.3529 (9)
C18—C19 1.355 (3) Na1—Cl1 2.7726 (10)
C2—C1—H1A 109.5 H23A—C23—H23B 108.5
C2—C1—H1B 109.5 C23—C24—H24A 109.5
H1A—C1—H1B 109.5 C23—C24—H24B 109.5
C2—C1—H1C 109.5 H24A—C24—H24B 109.5
H1A—C1—H1C 109.5 C23—C24—H24C 109.5
H1B—C1—H1C 109.5 H24A—C24—H24C 109.5
O1—C2—C1 107.50 (19) H24B—C24—H24C 109.5
O1—C2—H2A 110.2 O6—C25—N3 128.4 (4)
C1—C2—H2A 110.2 O6—C25—H25 115.8
O1—C2—H2B 110.2 N3—C25—H25 115.8
C1—C2—H2B 110.2 N3—C26—H26A 109.5
H2A—C2—H2B 108.5 N3—C26—H26B 109.5
C4—C3—O1 125.06 (18) H26A—C26—H26B 109.5
C4—C3—C8 121.16 (18) N3—C26—H26C 109.5
O1—C3—C8 113.78 (16) H26A—C26—H26C 109.5
C3—C4—C5 120.48 (19) H26B—C26—H26C 109.5
C3—C4—H4 119.8 N3—C27—H27A 109.5
C5—C4—H4 119.8 N3—C27—H27B 109.5
C6—C5—C4 120.24 (19) H27A—C27—H27B 109.5
C6—C5—H5 119.9 N3—C27—H27C 109.5
C4—C5—H5 119.9 H27A—C27—H27C 109.5
C5—C6—C7 120.9 (2) H27B—C27—H27C 109.5
C5—C6—H6 119.6 C9—N1—C10 123.02 (16)
C7—C6—H6 119.6 C9—N1—Cu1 124.58 (13)
C6—C7—C8 119.65 (18) C10—N1—Cu1 112.00 (12)
C6—C7—C9 117.51 (18) C16—N2—C15 123.16 (17)
C8—C7—C9 122.82 (18) C16—N2—Cu1 124.68 (14)
O2—C8—C7 124.89 (17) C15—N2—Cu1 112.10 (12)
O2—C8—C3 117.57 (16) C25—N3—C27 120.8 (4)
C7—C8—C3 117.52 (17) C25—N3—C26 116.8 (4)
N1—C9—C7 125.74 (18) C27—N3—C26 122.4 (4)
N1—C9—H9 117.1 C3—O1—C2 117.65 (16)
C7—C9—H9 117.1 C3—O1—Na1 117.35 (11)
C11—C10—C15 119.70 (18) C2—O1—Na1 124.69 (12)
C11—C10—N1 125.02 (19) C8—O2—Cu1 126.74 (12)
C15—C10—N1 115.27 (16) C8—O2—Na1 128.15 (12)
C12—C11—C10 119.8 (2) Cu1—O2—Na1 104.92 (6)
C12—C11—H11 120.1 C22—O3—Cu1 126.68 (13)
C10—C11—H11 120.1 C22—O3—Na1 129.38 (12)
C11—C12—C13 120.6 (2) Cu1—O3—Na1 103.57 (6)
C11—C12—H12 119.7 C21—O4—C23 119.18 (16)
C13—C12—H12 119.7 C21—O4—Na1 119.93 (11)
C12—C13—C14 120.9 (2) C23—O4—Na1 120.61 (13)
C12—C13—H13 119.6 Na1—O5—H5A 115.8
C14—C13—H13 119.6 Na1—O5—H5B 122.1
C13—C14—C15 119.5 (2) H5A—O5—H5B 107.7
C13—C14—H14 120.2 O3—Cu1—O2 85.28 (6)
C15—C14—H14 120.2 O3—Cu1—N1 178.41 (6)
C14—C15—C10 119.47 (19) O2—Cu1—N1 94.59 (6)
C14—C15—N2 125.23 (19) O3—Cu1—N2 94.84 (6)
C10—C15—N2 115.30 (16) O2—Cu1—N2 179.37 (7)
N2—C16—C17 125.50 (18) N1—Cu1—N2 85.31 (7)
N2—C16—H16 117.2 O3—Cu1—Na1 43.28 (4)
C17—C16—H16 117.2 O2—Cu1—Na1 42.07 (4)
C18—C17—C22 119.0 (2) N1—Cu1—Na1 136.65 (5)
C18—C17—C16 118.03 (19) N2—Cu1—Na1 138.01 (5)
C22—C17—C16 122.98 (18) O2—Na1—O3 66.12 (5)
C19—C18—C17 121.0 (2) O2—Na1—O5 103.25 (6)
C19—C18—H18 119.5 O3—Na1—O5 95.10 (6)
C17—C18—H18 119.5 O2—Na1—O1 63.11 (5)
C18—C19—C20 120.9 (2) O3—Na1—O1 128.73 (5)
C18—C19—H19 119.6 O5—Na1—O1 89.74 (6)
C20—C19—H19 119.6 O2—Na1—O4 127.37 (6)
C21—C20—C19 120.0 (2) O3—Na1—O4 61.25 (5)
C21—C20—H20 120.0 O5—Na1—O4 81.30 (6)
C19—C20—H20 120.0 O1—Na1—O4 167.51 (6)
O4—C21—C20 126.45 (19) O2—Na1—Cl1 105.82 (5)
O4—C21—C22 112.61 (16) O3—Na1—Cl1 111.77 (5)
C20—C21—C22 120.9 (2) O5—Na1—Cl1 146.43 (5)
O3—C22—C17 125.19 (18) O1—Na1—Cl1 88.68 (4)
O3—C22—C21 116.57 (18) O4—Na1—Cl1 93.97 (5)
C17—C22—C21 118.24 (18) O2—Na1—Cu1 33.02 (3)
O4—C23—C24 107.24 (18) O3—Na1—Cu1 33.15 (3)
O4—C23—H23A 110.3 O5—Na1—Cu1 102.27 (4)
C24—C23—H23A 110.3 O1—Na1—Cu1 96.02 (4)
O4—C23—H23B 110.3 O4—Na1—Cu1 94.39 (4)
C24—C23—H23B 110.3 Cl1—Na1—Cu1 111.24 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2489).

References

  1. Bian, J. (2008). Acta Cryst. E64, m625. [DOI] [PMC free article] [PubMed]
  2. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Karlin, K. D. (1993). Science, 261, 701–708. [DOI] [PubMed]
  5. Lo, W. K., Wong, W. K., Guo, J., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510–4521.
  6. Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem.44, 2050–2059. [DOI] [PubMed]
  7. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277–m2278.
  10. Xiao, H.-P. & Zhu, L.-G. (2003). Acta Cryst. E59, m964–m966.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051150/is2489sup1.cif

e-66-00m45-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051150/is2489Isup2.hkl

e-66-00m45-Isup2.hkl (235.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES