Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):o102. doi: 10.1107/S1600536809052593

N-Cyclo­hexyl-N-ethyl-4-methyl­benzene­sulfonamide

Zeeshan Haider a, Muhammad Nadeem Arshad a, Jim Simpson b, Islam Ullah Khan a,*, Muhammad Shafiq a
PMCID: PMC2980259  PMID: 21579993

Abstract

The title compound, C15H23NO2S, contains cyclo­hexyl and ethyl substituents on the sulfonamide N atom and the cyclo­hexyl ring adopts a classic chair conformation. The dihedral angle between the benzene ring plane and the mean plane through the six atoms of the cyclo­hexyl ring is 59.92 (6)°. In the crystal structure, C—H⋯O hydrogen bonds link mol­ecules into sheets extending in the bc plane.

Related literature

For ring conformations, see: Cremer & Pople (1975). For related structures, see: Arshad et al. (2008, 2009); Khan et al. (2009); Gowda et al. (2007a ,b ,c ).graphic file with name e-66-0o102-scheme1.jpg

Experimental

Crystal data

  • C15H23NO2S

  • M r = 281.40

  • Monoclinic, Inline graphic

  • a = 12.2269 (5) Å

  • b = 7.5818 (3) Å

  • c = 16.3045 (6) Å

  • β = 92.495 (2)°

  • V = 1510.03 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.43 × 0.32 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.914, T max = 0.969

  • 16676 measured reflections

  • 3714 independent reflections

  • 2251 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.122

  • S = 0.99

  • 3713 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004)), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052593/bt5132sup1.cif

e-66-0o102-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052593/bt5132Isup2.hkl

e-66-0o102-Isup2.hkl (178.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.97 2.66 3.530 (3) 150
C13—H13A⋯O1ii 0.96 2.60 3.512 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the ‘Strengthening of the Materials Chemistry Laboratory’ project at GC University, Lahore, Pakistan.

supplementary crystallographic information

Comment

Our group has been involved in the synthesis and crystallographic studies of sulfonamide derivatives (Arshad et al., 2009).

The title compound is a benzenesulfonamide with cyclohexyl and ethyl substituents on the sulfonamide N1 atom, Fig. 1. Bond distances in the molecule are comparable to those in similar structures (Arshad et al., 2008; Khan et al., 2009; Gowda et al., 2007a,b,c). The cyclohexyl (C7···C12) ring adopts a classic chair conformation with puckering amplitude Q = 0.567 (2) Å, θ = 178.8 (2) °, φ = 214 (11) ° (Cremer & Pople, 1975) and the plane through this ring is inclined at 59.92 (6) ° to that of the C1···C6 benzene ring. In the crystal structure C—H···O hydrogen bonds involving the C13–H13 bond of the methyl group and the C10–H10B bond of the cyclohexyl ring link each molecule to the O1 and O2 atoms of individual sulphonamide units forming an extended two dimensional network in the bc plane (Table 1, Fig. 2).

Experimental

A mixture of N-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), sodium hydride (0.21 g, 8.6 mmol) and N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of ethyl iodode (1.32 g, 8.6 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from a methanol solution.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

The 1 0 0 reflection was identified as being obscured by the beamstop and was omitted.

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C15H23NO2S F(000) = 608
Mr = 281.40 Dx = 1.238 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3495 reflections
a = 12.2269 (5) Å θ = 2.5–25.6°
b = 7.5818 (3) Å µ = 0.21 mm1
c = 16.3045 (6) Å T = 296 K
β = 92.495 (2)° Needle, white
V = 1510.03 (10) Å3 0.43 × 0.32 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3714 independent reflections
Radiation source: fine-focus sealed tube 2251 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −16→15
Tmin = 0.914, Tmax = 0.969 k = −10→9
16676 measured reflections l = −19→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3506P] where P = (Fo2 + 2Fc2)/3
3713 reflections (Δ/σ)max = 0.001
174 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22960 (5) 1.10442 (7) 0.56680 (3) 0.05930 (19)
O1 0.14930 (14) 1.1507 (2) 0.50392 (9) 0.0866 (5)
O2 0.32184 (13) 1.21640 (19) 0.58303 (10) 0.0784 (5)
N1 0.27372 (13) 0.9101 (2) 0.54440 (9) 0.0549 (4)
C1 0.16215 (14) 1.0870 (2) 0.66002 (11) 0.0451 (4)
C2 0.21516 (14) 1.1373 (2) 0.73271 (11) 0.0511 (5)
H2 0.2856 1.1835 0.7326 0.061*
C3 0.16309 (15) 1.1186 (3) 0.80559 (12) 0.0528 (5)
H3 0.1994 1.1519 0.8544 0.063*
C4 0.05847 (15) 1.0517 (2) 0.80760 (11) 0.0491 (5)
C5 0.00638 (16) 1.0042 (3) 0.73394 (13) 0.0571 (5)
H5 −0.0645 0.9598 0.7341 0.069*
C6 0.05660 (16) 1.0209 (3) 0.66051 (12) 0.0555 (5)
H6 0.0201 0.9881 0.6117 0.067*
C7 0.36213 (15) 0.8297 (2) 0.59696 (11) 0.0494 (5)
H7 0.3938 0.9237 0.6317 0.059*
C8 0.45338 (16) 0.7582 (3) 0.54568 (12) 0.0576 (5)
H8A 0.4245 0.6660 0.5096 0.069*
H8B 0.4808 0.8521 0.5118 0.069*
C9 0.54647 (16) 0.6847 (3) 0.59987 (14) 0.0671 (6)
H9A 0.6019 0.6358 0.5657 0.081*
H9B 0.5797 0.7793 0.6323 0.081*
C10 0.50692 (17) 0.5438 (3) 0.65621 (13) 0.0642 (6)
H10A 0.5673 0.5044 0.6922 0.077*
H10B 0.4811 0.4435 0.6239 0.077*
C11 0.4154 (2) 0.6108 (3) 0.70741 (13) 0.0697 (6)
H11A 0.4437 0.7014 0.7446 0.084*
H11B 0.3883 0.5148 0.7402 0.084*
C12 0.32174 (16) 0.6864 (3) 0.65394 (12) 0.0606 (5)
H12A 0.2670 0.7355 0.6887 0.073*
H12B 0.2876 0.5926 0.6214 0.073*
C13 0.00216 (18) 1.0322 (3) 0.88731 (13) 0.0723 (6)
H13A 0.0434 1.0933 0.9300 0.108*
H13B −0.0027 0.9095 0.9011 0.108*
H13C −0.0701 1.0815 0.8817 0.108*
C14 0.21331 (17) 0.8024 (3) 0.48246 (12) 0.0608 (5)
H14A 0.1357 0.8263 0.4855 0.073*
H14B 0.2249 0.6787 0.4953 0.073*
C15 0.2469 (2) 0.8363 (3) 0.39659 (13) 0.0820 (7)
H15A 0.2338 0.9578 0.3828 0.123*
H15B 0.2050 0.7624 0.3592 0.123*
H15C 0.3233 0.8104 0.3927 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0778 (4) 0.0485 (3) 0.0529 (3) 0.0114 (3) 0.0175 (2) 0.0068 (2)
O1 0.1182 (13) 0.0855 (12) 0.0565 (9) 0.0423 (10) 0.0071 (9) 0.0196 (8)
O2 0.0959 (11) 0.0491 (9) 0.0935 (11) −0.0132 (8) 0.0419 (9) −0.0031 (8)
N1 0.0682 (10) 0.0513 (10) 0.0455 (9) 0.0081 (8) 0.0054 (7) −0.0054 (8)
C1 0.0487 (10) 0.0398 (10) 0.0470 (10) 0.0075 (8) 0.0052 (8) 0.0001 (8)
C2 0.0410 (10) 0.0532 (12) 0.0591 (12) −0.0008 (8) 0.0027 (9) −0.0036 (9)
C3 0.0498 (11) 0.0590 (12) 0.0493 (11) 0.0003 (9) −0.0015 (8) −0.0077 (9)
C4 0.0537 (11) 0.0404 (10) 0.0537 (11) 0.0041 (8) 0.0078 (9) −0.0022 (9)
C5 0.0451 (11) 0.0574 (13) 0.0692 (14) −0.0064 (9) 0.0069 (9) −0.0074 (10)
C6 0.0544 (12) 0.0569 (12) 0.0545 (12) −0.0010 (10) −0.0049 (9) −0.0104 (10)
C7 0.0611 (11) 0.0441 (10) 0.0433 (10) 0.0015 (9) 0.0046 (8) −0.0062 (8)
C8 0.0590 (12) 0.0559 (12) 0.0593 (12) −0.0029 (10) 0.0164 (9) 0.0029 (10)
C9 0.0551 (12) 0.0620 (14) 0.0845 (16) −0.0010 (11) 0.0058 (11) −0.0003 (12)
C10 0.0640 (13) 0.0517 (12) 0.0760 (15) 0.0047 (10) −0.0062 (11) −0.0023 (11)
C11 0.0958 (16) 0.0593 (14) 0.0543 (12) 0.0046 (12) 0.0053 (11) 0.0072 (11)
C12 0.0674 (13) 0.0616 (13) 0.0543 (12) 0.0078 (11) 0.0207 (10) 0.0053 (10)
C13 0.0765 (15) 0.0772 (16) 0.0649 (14) −0.0025 (12) 0.0229 (11) −0.0008 (12)
C14 0.0638 (12) 0.0607 (13) 0.0576 (12) −0.0026 (10) −0.0001 (10) −0.0015 (10)
C15 0.0992 (18) 0.0938 (19) 0.0525 (13) −0.0011 (15) −0.0013 (12) −0.0099 (13)

Geometric parameters (Å, °)

S1—O2 1.4272 (16) C8—H8B 0.9700
S1—O1 1.4320 (16) C9—C10 1.502 (3)
S1—N1 1.6160 (17) C9—H9A 0.9700
S1—C1 1.7654 (18) C9—H9B 0.9700
N1—C14 1.472 (2) C10—C11 1.513 (3)
N1—C7 1.481 (2) C10—H10A 0.9700
C1—C2 1.380 (2) C10—H10B 0.9700
C1—C6 1.385 (3) C11—C12 1.521 (3)
C2—C3 1.380 (3) C11—H11A 0.9700
C2—H2 0.9300 C11—H11B 0.9700
C3—C4 1.378 (3) C12—H12A 0.9700
C3—H3 0.9300 C12—H12B 0.9700
C4—C5 1.383 (3) C13—H13A 0.9600
C4—C13 1.504 (3) C13—H13B 0.9600
C5—C6 1.375 (3) C13—H13C 0.9600
C5—H5 0.9300 C14—C15 1.498 (3)
C6—H6 0.9300 C14—H14A 0.9700
C7—C8 1.523 (3) C14—H14B 0.9700
C7—C12 1.525 (3) C15—H15A 0.9600
C7—H7 0.9800 C15—H15B 0.9600
C8—C9 1.517 (3) C15—H15C 0.9600
C8—H8A 0.9700
O2—S1—O1 119.90 (11) C8—C9—H9A 109.4
O2—S1—N1 108.38 (9) C10—C9—H9B 109.4
O1—S1—N1 106.68 (9) C8—C9—H9B 109.4
O2—S1—C1 106.25 (9) H9A—C9—H9B 108.0
O1—S1—C1 107.65 (9) C9—C10—C11 111.34 (18)
N1—S1—C1 107.42 (8) C9—C10—H10A 109.4
C14—N1—C7 120.00 (16) C11—C10—H10A 109.4
C14—N1—S1 119.89 (13) C9—C10—H10B 109.4
C7—N1—S1 119.14 (12) C11—C10—H10B 109.4
C2—C1—C6 119.88 (17) H10A—C10—H10B 108.0
C2—C1—S1 119.95 (14) C10—C11—C12 111.52 (17)
C6—C1—S1 120.16 (15) C10—C11—H11A 109.3
C3—C2—C1 119.63 (17) C12—C11—H11A 109.3
C3—C2—H2 120.2 C10—C11—H11B 109.3
C1—C2—H2 120.2 C12—C11—H11B 109.3
C2—C3—C4 121.47 (17) H11A—C11—H11B 108.0
C2—C3—H3 119.3 C11—C12—C7 111.20 (17)
C4—C3—H3 119.3 C11—C12—H12A 109.4
C3—C4—C5 117.93 (17) C7—C12—H12A 109.4
C3—C4—C13 121.15 (18) C11—C12—H12B 109.4
C5—C4—C13 120.93 (18) C7—C12—H12B 109.4
C6—C5—C4 121.74 (18) H12A—C12—H12B 108.0
C6—C5—H5 119.1 C4—C13—H13A 109.5
C4—C5—H5 119.1 C4—C13—H13B 109.5
C5—C6—C1 119.34 (18) H13A—C13—H13B 109.5
C5—C6—H6 120.3 C4—C13—H13C 109.5
C1—C6—H6 120.3 H13A—C13—H13C 109.5
N1—C7—C8 111.26 (15) H13B—C13—H13C 109.5
N1—C7—C12 113.46 (16) N1—C14—C15 113.33 (17)
C8—C7—C12 110.21 (16) N1—C14—H14A 108.9
N1—C7—H7 107.2 C15—C14—H14A 108.9
C8—C7—H7 107.2 N1—C14—H14B 108.9
C12—C7—H7 107.2 C15—C14—H14B 108.9
C9—C8—C7 111.12 (16) H14A—C14—H14B 107.7
C9—C8—H8A 109.4 C14—C15—H15A 109.5
C7—C8—H8A 109.4 C14—C15—H15B 109.5
C9—C8—H8B 109.4 H15A—C15—H15B 109.5
C7—C8—H8B 109.4 C14—C15—H15C 109.5
H8A—C8—H8B 108.0 H15A—C15—H15C 109.5
C10—C9—C8 111.37 (17) H15B—C15—H15C 109.5
C10—C9—H9A 109.4
O2—S1—N1—C14 −144.40 (15) C13—C4—C5—C6 −179.92 (19)
O1—S1—N1—C14 −14.01 (17) C4—C5—C6—C1 0.0 (3)
C1—S1—N1—C14 101.19 (15) C2—C1—C6—C5 −0.8 (3)
O2—S1—N1—C7 46.86 (16) S1—C1—C6—C5 178.40 (15)
O1—S1—N1—C7 177.24 (14) C14—N1—C7—C8 60.5 (2)
C1—S1—N1—C7 −67.56 (15) S1—N1—C7—C8 −130.77 (15)
O2—S1—C1—C2 −15.54 (18) C14—N1—C7—C12 −64.5 (2)
O1—S1—C1—C2 −145.16 (16) S1—N1—C7—C12 104.27 (17)
N1—S1—C1—C2 100.29 (16) N1—C7—C8—C9 177.02 (16)
O2—S1—C1—C6 165.26 (15) C12—C7—C8—C9 −56.2 (2)
O1—S1—C1—C6 35.64 (18) C7—C8—C9—C10 56.7 (2)
N1—S1—C1—C6 −78.91 (16) C8—C9—C10—C11 −55.7 (2)
C6—C1—C2—C3 1.0 (3) C9—C10—C11—C12 55.0 (2)
S1—C1—C2—C3 −178.17 (14) C10—C11—C12—C7 −55.1 (2)
C1—C2—C3—C4 −0.5 (3) N1—C7—C12—C11 −179.00 (15)
C2—C3—C4—C5 −0.3 (3) C8—C7—C12—C11 55.5 (2)
C2—C3—C4—C13 −179.85 (19) C7—N1—C14—C15 −103.9 (2)
C3—C4—C5—C6 0.6 (3) S1—N1—C14—C15 87.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10B···O2i 0.97 2.66 3.530 (3) 150
C13—H13A···O1ii 0.96 2.60 3.512 (3) 159

Symmetry codes: (i) x, y−1, z; (ii) x, −y+5/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5132).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284. [DOI] [PMC free article] [PubMed]
  3. Arshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2009). Acta Cryst. E65, o3229. [DOI] [PMC free article] [PubMed]
  4. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
  8. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
  9. Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
  10. Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052593/bt5132sup1.cif

e-66-0o102-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052593/bt5132Isup2.hkl

e-66-0o102-Isup2.hkl (178.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES