Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):o120. doi: 10.1107/S1600536809052180

2,4,8,10,13-Penta­methyl-6-phenyl-13,14-dihydro-12H-6λ5-dibenzo[d,i][1,3,7,2]dioxaza­phosphecin-6-thione

M Krishnaiah a,*, VHH Surendra Babu a, A Uma Ravi Sankar b, C Naga Raju c, Rajni Kant d
PMCID: PMC2980263  PMID: 21580010

Abstract

In the title compound, C25H28NO2PS, the cyclo­decene ring exhibits a crown conformation. The two dimethyl­benzene rings which are fused symmetrically on either side of the ten-membered ring, make dihedral angles of 20.2 (1) and 18.0 (1)°. The phenyl ring substituted at P is perpendicular to the heterocyclic ring, making a dihedral angle of 88.4 (1)°. The crystal structure is stabilized by very weak intra­molecular C—H⋯O hydrogen bonding.

Related literature

For applications of phospho­rus containing macrocycles, see: Lehn (1988); Cram (1988). For their biological activity, see: Sankar et al. (2009). For P=S bond lengths in related structures, see: Dutasta et al. (1979).graphic file with name e-66-0o120-scheme1.jpg

Experimental

Crystal data

  • C25H28NO2PS

  • M r = 437.52

  • Monoclinic, Inline graphic

  • a = 8.7117 (9) Å

  • b = 16.3225 (16) Å

  • c = 16.9021 (16) Å

  • β = 99.525 (10)°

  • V = 2370.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • 21854 measured reflections

  • 7063 independent reflections

  • 3672 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.161

  • S = 1.03

  • 7063 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CryAlis PRO (Oxford Diffraction, 2007); cell refinement: CryAlis PRO; data reduction: CryAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052180/pb2015sup1.cif

e-66-0o120-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052180/pb2015Isup2.hkl

e-66-0o120-Isup2.hkl (333.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O3 0.96 2.39 2.848 (3) 109

Acknowledgments

MK thanks the University Grants Commission, New Delhi, for sanctioning the major research project for this work.

supplementary crystallographic information

Comment

Phosphorus containing macrocycles are interesting molecules with potential applications in supramolecular and synthetic organic chemistry. The molecules found numerous industrial (Lehn, 1988) and biological (Cram, 1988) applications and also function as good hosts in the host–guest chemistry. The present title compound possesses antimicrobial activity against gram positive Staphylococcus aureus, gram negative Escherichia coli and antifungal activity against Aspergillus niger, Helminthosporium oryzae. It also exhibits equal antimicrobial and antifungal activities when compared with that of standard Penicillin and Griseofulvin (Sankar et al., 2009).

The P=S bond length, 1.913Å is in good agreement with the related structure (Dutasta et al., 1979). The crown conformation makes P—N bond length[3.133 Å] smaller than the Van der Waal's radii[3.35 Å] in such a way, which is favourable for P—N coordination. It is interesting to mention that the geometrical parameters between the two fragments from P to N of the ten membered heterocyclic ring are equal within the experimental limitations. The sulfur substituted at P and the methyl substituted at N are almost orthogonally oriented to the mean plane of cyclodecene. The bond angles O(3)—P(1)=S(2) and O(4)—P(1)=S(2) are identical to each other and same is the case with the bond angles O(3)—P(1)—C(25), O(4)—P(1)—C(25)and C(14)—N(5)—C(15),C(16)—N(5)—C(15). The crystal structure is stabilized by intra molecular C—H···O hydrogen bonding. The packing of the molecules is along [110] plane (figure 2).

Experimental

A solution of phenyl dichlorophosphine (300 mg, 2 mmol) in 25 ml of dry toluene was added dropwise over a period of 20 minutes to a stirred solution of bis(2,4-dimethyl-2-hydroxybenzyl)methylamine (600 mg, 2 mmol) and triethyl amine (404 mg, 4 mmol) in 25 ml of dry toluene at 0°C under N2 atmosphere. After the addition, the temperature of the reaction mixture was raised to room temperature and stirred for 3 h, later the reaction mixture was stirred at 30°C for another 3 h. The triethylamine hydrochloride was removed by filtration. The intermediate obtained was dissolved in dry toluene (30 ml) and sulfur was added at room temperature. The reaction mixture was brought to reflux and kept with stirring for 2 h for the completion of reaction was indicated by TLC analysis. The solvent was removed in a rota-evaporator. The resulting crude product was crystallized by 2-propanol, rectangular shaped single crystals are obtained for diffraction studies.

Refinement

All the H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2eq (C) for aromatic, 0.97 Å, Uiso = 1.2eq (C)for CH2 group and 0.96 Å, Uiso = 1.5eq (C) for CH3 group

Figures

Fig. 1.

Fig. 1.

View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Packing view of the molecules in the unit cell.

Crystal data

C25H28NO2PS F(000) = 928
Mr = 437.52 Dx = 1.226 Mg m3Dm = 1.225 Mg m3Dm measured by not measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7063 reflections
a = 8.7117 (9) Å θ = 3.1–30.2°
b = 16.3225 (16) Å µ = 0.23 mm1
c = 16.9021 (16) Å T = 293 K
β = 99.525 (10)° Rectangular, brown
V = 2370.3 (4) Å3 0.30 × 0.24 × 0.18 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer 3672 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 30.2°, θmin = 3.1°
ω–2θ scans h = −8→12
21854 measured reflections k = −23→20
7063 independent reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3
7063 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.17744 (6) 0.16344 (3) 0.18237 (3) 0.03883 (16)
S2 0.02473 (7) 0.22402 (3) 0.22679 (4) 0.05506 (19)
O3 0.12396 (15) 0.11944 (8) 0.09791 (7) 0.0405 (3)
C25 0.3425 (2) 0.22061 (12) 0.16102 (11) 0.0427 (5)
O4 0.26513 (16) 0.09104 (8) 0.23448 (8) 0.0439 (3)
N5 −0.0375 (2) 0.01189 (10) 0.19579 (9) 0.0424 (4)
C24 −0.0253 (2) 0.12021 (12) 0.05097 (11) 0.0410 (5)
C22 −0.0613 (3) 0.18239 (12) −0.00492 (12) 0.0470 (5)
C13 0.1521 (3) −0.00145 (13) 0.31893 (12) 0.0452 (5)
C17 −0.1224 (2) 0.05350 (12) 0.05584 (11) 0.0426 (5)
C6 0.2449 (2) 0.06607 (13) 0.31197 (11) 0.0427 (5)
C16 −0.0717 (3) −0.01544 (12) 0.11289 (11) 0.0466 (5)
H16A −0.1533 −0.0565 0.1078 0.056*
H16B 0.0204 −0.0409 0.0985 0.056*
C18 −0.2601 (3) 0.05058 (14) 0.00225 (12) 0.0524 (5)
H18 −0.3272 0.0067 0.0048 0.063*
C14 0.0690 (3) −0.04331 (13) 0.24529 (12) 0.0512 (5)
H14A 0.1447 −0.0640 0.2142 0.061*
H14B 0.0111 −0.0897 0.2610 0.061*
C21 −0.2018 (3) 0.17554 (14) −0.05738 (13) 0.0550 (6)
H21 −0.2290 0.2164 −0.0955 0.066*
C30 0.3574 (3) 0.30281 (13) 0.17657 (13) 0.0544 (6)
H30 0.2791 0.3311 0.1963 0.065*
C12 0.1470 (3) −0.03023 (14) 0.39559 (13) 0.0525 (6)
H12 0.0850 −0.0754 0.4017 0.063*
C29 0.4898 (3) 0.34342 (16) 0.16272 (16) 0.0694 (7)
H29 0.4999 0.3992 0.1734 0.083*
C23 0.0493 (3) 0.25157 (14) −0.01172 (15) 0.0670 (7)
H23A 0.1391 0.2463 0.0294 0.100*
H23B −0.0015 0.3028 −0.0054 0.100*
H23C 0.0810 0.2499 −0.0635 0.100*
C7 0.3294 (3) 0.10556 (14) 0.37772 (13) 0.0561 (6)
C15 −0.1759 (3) 0.02847 (16) 0.22984 (13) 0.0607 (6)
H15A −0.1467 0.0470 0.2842 0.091*
H15B −0.2367 −0.0207 0.2291 0.091*
H15C −0.2363 0.0701 0.1989 0.091*
C19 −0.3022 (3) 0.11051 (15) −0.05507 (13) 0.0575 (6)
C26 0.4609 (3) 0.17977 (15) 0.13089 (15) 0.0617 (6)
H26 0.4525 0.1239 0.1200 0.074*
C10 0.2310 (3) 0.00598 (16) 0.46344 (13) 0.0598 (6)
C20 −0.4511 (3) 0.1035 (2) −0.11439 (17) 0.0885 (9)
H20A −0.5047 0.0543 −0.1040 0.133*
H20B −0.4274 0.1016 −0.1678 0.133*
H20C −0.5159 0.1501 −0.1092 0.133*
C9 0.3187 (3) 0.07330 (17) 0.45288 (13) 0.0641 (7)
H9 0.3739 0.0988 0.4980 0.077*
C8 0.4268 (4) 0.17912 (18) 0.36884 (17) 0.0832 (9)
H8A 0.4759 0.1975 0.4209 0.125*
H8B 0.3622 0.2220 0.3426 0.125*
H8C 0.5051 0.1652 0.3373 0.125*
C28 0.6049 (4) 0.30329 (19) 0.13385 (16) 0.0750 (8)
H28 0.6938 0.3313 0.1255 0.090*
C27 0.5903 (3) 0.22253 (18) 0.11724 (18) 0.0758 (8)
H27 0.6685 0.1954 0.0963 0.091*
C11 0.2268 (4) −0.0284 (2) 0.54643 (14) 0.0864 (9)
H11A 0.1601 −0.0756 0.5421 0.130*
H11B 0.1877 0.0125 0.5787 0.130*
H11C 0.3301 −0.0440 0.5710 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0388 (3) 0.0353 (3) 0.0422 (3) −0.0001 (2) 0.0060 (2) −0.0017 (2)
S2 0.0534 (4) 0.0493 (3) 0.0648 (4) 0.0089 (3) 0.0168 (3) −0.0070 (3)
O3 0.0393 (8) 0.0403 (8) 0.0416 (7) −0.0017 (6) 0.0058 (6) −0.0024 (6)
C25 0.0435 (12) 0.0398 (11) 0.0432 (10) −0.0097 (9) 0.0021 (9) −0.0006 (9)
O4 0.0452 (8) 0.0433 (8) 0.0429 (7) 0.0045 (6) 0.0060 (6) 0.0041 (6)
N5 0.0452 (10) 0.0415 (9) 0.0400 (9) 0.0009 (8) 0.0056 (8) 0.0041 (7)
C24 0.0408 (11) 0.0446 (11) 0.0373 (10) −0.0019 (9) 0.0053 (9) −0.0022 (9)
C22 0.0514 (13) 0.0424 (11) 0.0467 (11) −0.0007 (10) 0.0066 (10) 0.0011 (9)
C13 0.0475 (12) 0.0426 (11) 0.0448 (11) 0.0105 (9) 0.0059 (10) 0.0064 (9)
C17 0.0472 (12) 0.0425 (11) 0.0381 (10) −0.0061 (9) 0.0075 (9) −0.0018 (9)
C6 0.0408 (11) 0.0456 (11) 0.0413 (10) 0.0051 (9) 0.0052 (9) 0.0046 (9)
C16 0.0541 (13) 0.0377 (11) 0.0466 (11) −0.0121 (10) 0.0039 (10) −0.0019 (9)
C18 0.0485 (13) 0.0562 (13) 0.0507 (12) −0.0104 (11) 0.0030 (11) −0.0025 (10)
C14 0.0596 (14) 0.0405 (12) 0.0518 (12) −0.0019 (10) 0.0039 (11) 0.0062 (10)
C21 0.0571 (15) 0.0555 (14) 0.0485 (12) 0.0048 (11) −0.0028 (11) 0.0085 (10)
C30 0.0634 (15) 0.0398 (12) 0.0576 (13) −0.0106 (11) 0.0032 (11) −0.0025 (10)
C12 0.0471 (13) 0.0586 (14) 0.0529 (13) 0.0067 (10) 0.0114 (11) 0.0123 (11)
C29 0.085 (2) 0.0476 (14) 0.0724 (16) −0.0216 (14) 0.0036 (15) 0.0030 (12)
C23 0.0761 (18) 0.0540 (14) 0.0669 (15) −0.0114 (13) 0.0004 (14) 0.0196 (12)
C7 0.0539 (14) 0.0583 (14) 0.0525 (12) 0.0011 (11) −0.0021 (11) 0.0016 (11)
C15 0.0491 (14) 0.0803 (17) 0.0547 (13) −0.0015 (12) 0.0143 (11) 0.0081 (12)
C19 0.0548 (14) 0.0613 (15) 0.0528 (13) −0.0014 (12) −0.0019 (11) 0.0010 (11)
C26 0.0509 (14) 0.0508 (14) 0.0871 (17) −0.0071 (11) 0.0224 (13) −0.0073 (12)
C10 0.0577 (15) 0.0775 (17) 0.0440 (12) 0.0175 (13) 0.0075 (11) 0.0116 (12)
C20 0.0703 (19) 0.094 (2) 0.088 (2) −0.0080 (16) −0.0243 (16) 0.0151 (17)
C9 0.0643 (16) 0.0811 (18) 0.0430 (12) 0.0054 (14) −0.0025 (11) −0.0043 (12)
C8 0.089 (2) 0.0820 (19) 0.0676 (16) −0.0263 (16) −0.0194 (15) 0.0023 (15)
C28 0.0702 (19) 0.081 (2) 0.0722 (17) −0.0307 (16) 0.0064 (15) 0.0094 (15)
C27 0.0569 (17) 0.080 (2) 0.096 (2) −0.0119 (14) 0.0299 (15) −0.0035 (16)
C11 0.079 (2) 0.130 (3) 0.0516 (14) 0.0177 (19) 0.0149 (14) 0.0249 (16)

Geometric parameters (Å, °)

P1—O4 1.5916 (14) C12—C10 1.387 (3)
P1—O3 1.5970 (13) C12—H12 0.9300
P1—C25 1.800 (2) C29—C28 1.355 (4)
P1—S2 1.9083 (7) C29—H29 0.9300
O3—C24 1.407 (2) C23—H23A 0.9600
C25—C30 1.369 (3) C23—H23B 0.9600
C25—C26 1.393 (3) C23—H23C 0.9600
O4—C6 1.410 (2) C7—C9 1.393 (3)
N5—C15 1.445 (3) C7—C8 1.492 (4)
N5—C16 1.454 (2) C15—H15A 0.9600
N5—C14 1.454 (3) C15—H15B 0.9600
C24—C22 1.387 (3) C15—H15C 0.9600
C24—C17 1.390 (3) C19—C20 1.507 (3)
C22—C21 1.391 (3) C26—C27 1.378 (3)
C22—C23 1.501 (3) C26—H26 0.9300
C13—C6 1.383 (3) C10—C9 1.367 (4)
C13—C12 1.386 (3) C10—C11 1.517 (3)
C13—C14 1.498 (3) C20—H20A 0.9600
C17—C18 1.379 (3) C20—H20B 0.9600
C17—C16 1.500 (3) C20—H20C 0.9600
C6—C7 1.386 (3) C9—H9 0.9300
C16—H16A 0.9700 C8—H8A 0.9600
C16—H16B 0.9700 C8—H8B 0.9600
C18—C19 1.383 (3) C8—H8C 0.9600
C18—H18 0.9300 C28—C27 1.349 (4)
C14—H14A 0.9700 C28—H28 0.9300
C14—H14B 0.9700 C27—H27 0.9300
C21—C19 1.380 (3) C11—H11A 0.9600
C21—H21 0.9300 C11—H11B 0.9600
C30—C29 1.383 (3) C11—H11C 0.9600
C30—H30 0.9300
O4—P1—O3 101.72 (7) C28—C29—H29 119.4
O4—P1—C25 99.77 (9) C30—C29—H29 119.4
O3—P1—C25 100.28 (8) C22—C23—H23A 109.5
O4—P1—S2 117.97 (6) C22—C23—H23B 109.5
O3—P1—S2 117.74 (6) H23A—C23—H23B 109.5
C25—P1—S2 116.25 (7) C22—C23—H23C 109.5
C24—O3—P1 127.29 (12) H23A—C23—H23C 109.5
C30—C25—C26 119.1 (2) H23B—C23—H23C 109.5
C30—C25—P1 121.54 (17) C6—C7—C9 116.7 (2)
C26—C25—P1 119.30 (16) C6—C7—C8 121.9 (2)
C6—O4—P1 127.32 (12) C9—C7—C8 121.4 (2)
C15—N5—C16 112.94 (17) N5—C15—H15A 109.5
C15—N5—C14 112.43 (16) N5—C15—H15B 109.5
C16—N5—C14 111.96 (16) H15A—C15—H15B 109.5
C22—C24—C17 122.84 (19) N5—C15—H15C 109.5
C22—C24—O3 118.35 (17) H15A—C15—H15C 109.5
C17—C24—O3 118.33 (17) H15B—C15—H15C 109.5
C24—C22—C21 116.83 (19) C21—C19—C18 117.9 (2)
C24—C22—C23 121.8 (2) C21—C19—C20 121.3 (2)
C21—C22—C23 121.30 (19) C18—C19—C20 120.8 (2)
C6—C13—C12 117.3 (2) C27—C26—C25 119.7 (2)
C6—C13—C14 120.14 (18) C27—C26—H26 120.2
C12—C13—C14 122.4 (2) C25—C26—H26 120.2
C18—C17—C24 117.39 (19) C9—C10—C12 117.7 (2)
C18—C17—C16 121.85 (18) C9—C10—C11 121.2 (2)
C24—C17—C16 120.57 (18) C12—C10—C11 121.1 (2)
C13—C6—C7 122.87 (19) C19—C20—H20A 109.5
C13—C6—O4 118.29 (18) C19—C20—H20B 109.5
C7—C6—O4 118.58 (19) H20A—C20—H20B 109.5
N5—C16—C17 112.40 (16) C19—C20—H20C 109.5
N5—C16—H16A 109.1 H20A—C20—H20C 109.5
C17—C16—H16A 109.1 H20B—C20—H20C 109.5
N5—C16—H16B 109.1 C10—C9—C7 123.1 (2)
C17—C16—H16B 109.1 C10—C9—H9 118.4
H16A—C16—H16B 107.9 C7—C9—H9 118.4
C17—C18—C19 122.4 (2) C7—C8—H8A 109.5
C17—C18—H18 118.8 C7—C8—H8B 109.5
C19—C18—H18 118.8 H8A—C8—H8B 109.5
N5—C14—C13 111.73 (17) C7—C8—H8C 109.5
N5—C14—H14A 109.3 H8A—C8—H8C 109.5
C13—C14—H14A 109.3 H8B—C8—H8C 109.5
N5—C14—H14B 109.3 C27—C28—C29 119.8 (3)
C13—C14—H14B 109.3 C27—C28—H28 120.1
H14A—C14—H14B 107.9 C29—C28—H28 120.1
C19—C21—C22 122.6 (2) C28—C27—C26 120.8 (3)
C19—C21—H21 118.7 C28—C27—H27 119.6
C22—C21—H21 118.7 C26—C27—H27 119.6
C25—C30—C29 119.5 (2) C10—C11—H11A 109.5
C25—C30—H30 120.2 C10—C11—H11B 109.5
C29—C30—H30 120.2 H11A—C11—H11B 109.5
C13—C12—C10 122.3 (2) C10—C11—H11C 109.5
C13—C12—H12 118.8 H11A—C11—H11C 109.5
C10—C12—H12 118.8 H11B—C11—H11C 109.5
C28—C29—C30 121.1 (2)
O4—P1—O3—C24 130.89 (15) C24—C17—C18—C19 0.5 (3)
C25—P1—O3—C24 −126.77 (16) C16—C17—C18—C19 −174.6 (2)
S2—P1—O3—C24 0.33 (17) C15—N5—C14—C13 −74.0 (2)
O4—P1—C25—C30 −127.47 (18) C16—N5—C14—C13 157.61 (17)
O3—P1—C25—C30 128.60 (18) C6—C13—C14—N5 −59.9 (3)
S2—P1—C25—C30 0.5 (2) C12—C13—C14—N5 123.5 (2)
O4—P1—C25—C26 50.00 (19) C24—C22—C21—C19 0.0 (3)
O3—P1—C25—C26 −53.93 (19) C23—C22—C21—C19 176.8 (2)
S2—P1—C25—C26 177.98 (16) C26—C25—C30—C29 −0.5 (3)
O3—P1—O4—C6 −131.31 (16) P1—C25—C30—C29 176.95 (18)
C25—P1—O4—C6 125.93 (17) C6—C13—C12—C10 −0.3 (3)
S2—P1—O4—C6 −0.90 (18) C14—C13—C12—C10 176.4 (2)
P1—O3—C24—C22 89.3 (2) C25—C30—C29—C28 0.1 (4)
P1—O3—C24—C17 −98.4 (2) C13—C6—C7—C9 0.8 (3)
C17—C24—C22—C21 0.0 (3) O4—C6—C7—C9 −173.3 (2)
O3—C24—C22—C21 171.87 (18) C13—C6—C7—C8 −179.0 (2)
C17—C24—C22—C23 −176.8 (2) O4—C6—C7—C8 6.9 (3)
O3—C24—C22—C23 −4.9 (3) C22—C21—C19—C18 0.3 (4)
C22—C24—C17—C18 −0.2 (3) C22—C21—C19—C20 −178.1 (2)
O3—C24—C17—C18 −172.11 (17) C17—C18—C19—C21 −0.6 (3)
C22—C24—C17—C16 174.92 (18) C17—C18—C19—C20 177.8 (2)
O3—C24—C17—C16 3.0 (3) C30—C25—C26—C27 0.0 (4)
C12—C13—C6—C7 −0.8 (3) P1—C25—C26—C27 −177.6 (2)
C14—C13—C6—C7 −177.5 (2) C13—C12—C10—C9 1.3 (3)
C12—C13—C6—O4 173.30 (18) C13—C12—C10—C11 −178.2 (2)
C14—C13—C6—O4 −3.4 (3) C12—C10—C9—C7 −1.3 (4)
P1—O4—C6—C13 99.7 (2) C11—C10—C9—C7 178.1 (2)
P1—O4—C6—C7 −86.0 (2) C6—C7—C9—C10 0.3 (4)
C15—N5—C16—C17 75.8 (2) C8—C7—C9—C10 −179.9 (3)
C14—N5—C16—C17 −156.10 (18) C30—C29—C28—C27 0.8 (4)
C18—C17—C16—N5 −125.8 (2) C29—C28—C27—C26 −1.4 (4)
C24—C17—C16—N5 59.3 (3) C25—C26—C27—C28 1.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C23—H23A···O3 0.96 2.39 2.848 (3) 109

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2015).

References

  1. Cram, D. J. (1988). Angew Chem. Int. Ed. Engl 27, 1009–1020.
  2. Dutasta, J. P., Grand, A., Guimaraes, A. C. & Robert, J. B. (1979). Tetrahedron, 35, 197–207.
  3. Lehn, J. M. (1988). Angew Chem. Int. Ed. Engl 27, 89–112.
  4. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  5. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd. Abingdon, England.
  6. Sankar, A. U. R., Kumar, B. S., Reddy, M. V. N., Reddy, S. S., Reddy, C. S. & Raju, C. N. (2009). Bulg. Chem. Commun. 41, 59–64.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zsolnai, L. (1997). ZORTEPII University of Heidelberg, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052180/pb2015sup1.cif

e-66-0o120-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052180/pb2015Isup2.hkl

e-66-0o120-Isup2.hkl (333.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES