Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 24;66(Pt 1):o225. doi: 10.1107/S1600536809053227

2-(2-Methyl-1,3-dioxolan-2-yl)-1,1-diphenyl­ethanol

Dennis P Arnold a, John C McMurtrie a,*
PMCID: PMC2980271  PMID: 21580107

Abstract

The mol­ecules of the title compound, C18H20O3, display an intra­molecular O—H⋯O hydrogen bond between the hydr­oxy donor and a ketal O-atom acceptor. In the crystal, inter­molecular C—H⋯π inter­actions connect adjacent mol­ecules into chains parallel to the b axis.

Related literature

For the preparation of the title compound, see: Paulson et al. (1973). graphic file with name e-66-0o225-scheme1.jpg

Experimental

Crystal data

  • C18H20O3

  • M r = 284.34

  • Monoclinic, Inline graphic

  • a = 5.7961 (4) Å

  • b = 8.8271 (7) Å

  • c = 29.754 (2) Å

  • β = 92.150 (7)°

  • V = 1521.26 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.68 × 0.35 × 0.09 mm

Data collection

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.974, T max = 1.000

  • 5871 measured reflections

  • 3407 independent reflections

  • 2458 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.100

  • S = 1.03

  • 3407 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053227/jh2121sup1.cif

e-66-0o225-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053227/jh2121Isup2.hkl

e-66-0o225-Isup2.hkl (167.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O2 0.94 (1) 1.81 (1) 2.6820 (12) 153 (1)

Acknowledgments

The authors gratefully acknowledge the Applied Chemistry Cluster, Faculty of Science and Technology, Queensland University of Technology, for financial support.

supplementary crystallographic information

Comment

The molecular stucture of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular hydrogen bond between the hydroxy moiety and one of the ketal oxygen atoms (O3—H1O···O2, oxygen-oxygen distance 2.6820 (12) Å, O—H···O angle 153 (1)°). The presence of the hydrogen bond results in a loss of the average mirror symmetry and as a result the molecular conformer is chiral at C2. Both hands of the conformer are present in the structure as implied by the centrosymmetric space symmetry. The 1H NMR spectrum (room temperature) is indicative of the average conformation indicating that rearrangement in the solution state is rapid on the NMR timescale.

The molecules of (I) are arranged in chains that propagate parallel to the b axis via intermolecular CH···π interactions as illustrated in Fig. 2 (C15—H15edge···C13—C18plane distance 2.96 Å). Interestingly, these are the only significant aryl-aryl interactions. The aliphatic components of the molecule including the methyl, methylene and ketal groups, completely occupy the space between the two phenyl rings (highlighted in Fig. 2) in which π interactions would be expected to occur. Adjacent chains are connected by weakly interacting aliphatic-CH···π interactions in addition to the omnipresent van der Waals forces.

Experimental

The title compound was prepared by the procedure reported by Paulson et al. (1973). Large crystalline plates were obtained from methanol/water by vapour diffusion. NMR 1H (300 MHz, CDCl3) 7.53 (m, 4H, ortho-H), 7.30 (m, 4H, meta-H), 7.18 (tt, 2H, para-H), 5.39 (s, 1H, OH), 3.9–3.6 (symmetrical multiplets, AA'BB', 4H, ketal ring H), 2.84 (s, 2H, CH2), 1.07 (s, 3H, CH3).

Refinement

C-bound H atoms were included in idealized positions and refined using a riding model approximation with methylene, methyl and aromatic bond lengths fixed at 0.99, 0.98 and 0.95 Å, respectively. Uiso(H) values were fixed at 1.2Ueq of the parent C atoms for methylene and aromatic H atoms and 1.5Ueq of the parent C atoms for methyl H atoms. The hydroxy H atom was located in a Fourier difference map and refined with an O—H bond length restraint of 0.98 Å and with Uiso fixed at 1.5Ueq of the parent O atom.

Figures

Fig. 1.

Fig. 1.

ORTEP depiction of the molecular structure with atom numbering scheme. Ellipsoids are drawn at the 40% probability level. The intramolecular hydrogen bond (O3—H···O2) is indicated by a dashed line.

Fig. 2.

Fig. 2.

Crystal packing detail viewed parallel to the a axis. CH···π (edge to face) interactions propagate parallel to the b axis (black arrows). The arrangement of the aliphatic components (methyl green, ethylene orange and ketal blue) between four phenyl rings is indicated.

Crystal data

C18H20O3 F(000) = 608
Mr = 284.34 Dx = 1.241 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.7961 (4) Å Cell parameters from 2617 reflections
b = 8.8271 (7) Å θ = 3.4–28.6°
c = 29.754 (2) Å µ = 0.08 mm1
β = 92.150 (7)° T = 173 K
V = 1521.26 (19) Å3 Plate, colourless
Z = 4 0.68 × 0.35 × 0.09 mm

Data collection

Oxford Diffraction Gemini diffractometer 3407 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2458 reflections with I > 2σ(I)
graphite Rint = 0.017
Detector resolution: 16.0774 pixels mm-1 θmax = 28.7°, θmin = 3.5°
ω scans h = −4→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −11→10
Tmin = 0.974, Tmax = 1.000 l = −37→37
5871 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3
3407 reflections (Δ/σ)max = 0.001
194 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9148 (2) 0.35245 (18) 0.06596 (5) 0.0381 (4)
H1A 0.9150 0.2620 0.0468 0.057*
H1B 1.0740 0.3862 0.0720 0.057*
H1C 0.8270 0.4333 0.0506 0.057*
C2 0.8042 (2) 0.31506 (15) 0.10991 (4) 0.0276 (3)
C3 0.7536 (3) 0.10241 (17) 0.15222 (6) 0.0450 (4)
H3A 0.7242 0.1454 0.1822 0.054*
H3B 0.8023 −0.0046 0.1558 0.054*
C4 0.5432 (3) 0.11605 (17) 0.12092 (6) 0.0465 (4)
H4A 0.5403 0.0347 0.0980 0.056*
H4B 0.3994 0.1112 0.1378 0.056*
C5 0.8041 (2) 0.44391 (13) 0.14479 (4) 0.0214 (3)
H5A 0.9611 0.4883 0.1463 0.026*
H5B 0.7780 0.3976 0.1745 0.026*
C6 0.63093 (18) 0.57549 (14) 0.13839 (4) 0.0193 (3)
C7 0.6771 (2) 0.67148 (14) 0.09647 (4) 0.0213 (3)
C8 0.8846 (2) 0.74953 (15) 0.09357 (4) 0.0300 (3)
H8 0.9982 0.7406 0.1173 0.036*
C9 0.9288 (2) 0.83969 (17) 0.05699 (5) 0.0387 (4)
H9 1.0708 0.8931 0.0559 0.046*
C10 0.7661 (3) 0.85235 (18) 0.02188 (5) 0.0402 (4)
H10 0.7960 0.9139 −0.0034 0.048*
C11 0.5610 (3) 0.77505 (18) 0.02399 (5) 0.0410 (4)
H11 0.4495 0.7829 −0.0001 0.049*
C12 0.5150 (2) 0.68539 (15) 0.06104 (4) 0.0306 (3)
H12 0.3719 0.6333 0.0622 0.037*
C13 0.6400 (2) 0.68055 (13) 0.17969 (4) 0.0208 (3)
C14 0.4531 (2) 0.77607 (15) 0.18647 (5) 0.0318 (3)
H14 0.3254 0.7752 0.1655 0.038*
C15 0.4502 (3) 0.87249 (17) 0.22329 (5) 0.0413 (4)
H15 0.3211 0.9368 0.2273 0.050*
C16 0.6344 (3) 0.87537 (17) 0.25425 (5) 0.0391 (4)
H16 0.6322 0.9406 0.2796 0.047*
C17 0.8203 (3) 0.78268 (16) 0.24777 (5) 0.0388 (4)
H17 0.9478 0.7846 0.2688 0.047*
C18 0.8250 (2) 0.68578 (15) 0.21082 (4) 0.0289 (3)
H18 0.9556 0.6228 0.2069 0.035*
O1 0.92307 (16) 0.18920 (10) 0.12962 (3) 0.0369 (3)
O2 0.56966 (15) 0.26253 (10) 0.10043 (3) 0.0344 (2)
O3 0.39885 (13) 0.51655 (10) 0.13579 (3) 0.0244 (2)
H1O 0.409 (2) 0.4207 (11) 0.1220 (4) 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0378 (8) 0.0446 (9) 0.0321 (8) 0.0005 (7) 0.0053 (6) −0.0139 (7)
C2 0.0236 (6) 0.0255 (7) 0.0335 (7) 0.0007 (6) −0.0033 (5) −0.0071 (6)
C3 0.0514 (10) 0.0226 (8) 0.0614 (10) −0.0015 (7) 0.0062 (8) −0.0012 (7)
C4 0.0409 (9) 0.0264 (8) 0.0726 (12) −0.0062 (7) 0.0069 (8) −0.0054 (8)
C5 0.0208 (6) 0.0232 (7) 0.0199 (6) −0.0019 (5) −0.0009 (5) −0.0005 (5)
C6 0.0166 (6) 0.0227 (6) 0.0188 (6) −0.0030 (5) 0.0002 (5) 0.0006 (5)
C7 0.0229 (6) 0.0222 (6) 0.0190 (6) 0.0022 (5) 0.0023 (5) −0.0001 (5)
C8 0.0259 (7) 0.0365 (8) 0.0275 (7) −0.0024 (6) 0.0009 (5) 0.0066 (6)
C9 0.0338 (8) 0.0415 (9) 0.0414 (8) −0.0036 (7) 0.0099 (6) 0.0131 (7)
C10 0.0485 (9) 0.0439 (9) 0.0291 (7) 0.0100 (7) 0.0122 (7) 0.0169 (7)
C11 0.0451 (9) 0.0525 (10) 0.0248 (7) 0.0059 (8) −0.0052 (6) 0.0090 (7)
C12 0.0299 (7) 0.0352 (8) 0.0265 (7) 0.0000 (6) −0.0039 (5) 0.0030 (6)
C13 0.0235 (6) 0.0196 (6) 0.0194 (6) −0.0038 (5) 0.0036 (5) 0.0014 (5)
C14 0.0269 (7) 0.0347 (8) 0.0340 (7) 0.0012 (6) 0.0028 (6) −0.0068 (6)
C15 0.0371 (8) 0.0392 (8) 0.0487 (9) 0.0027 (7) 0.0148 (7) −0.0157 (8)
C16 0.0486 (9) 0.0384 (8) 0.0311 (8) −0.0096 (7) 0.0112 (7) −0.0133 (7)
C17 0.0465 (9) 0.0411 (9) 0.0281 (7) −0.0070 (7) −0.0071 (6) −0.0071 (7)
C18 0.0312 (7) 0.0279 (7) 0.0273 (7) 0.0007 (6) −0.0027 (5) −0.0023 (6)
O1 0.0331 (5) 0.0252 (5) 0.0521 (6) 0.0051 (4) −0.0017 (5) −0.0042 (5)
O2 0.0286 (5) 0.0299 (5) 0.0443 (6) −0.0050 (4) −0.0044 (4) −0.0100 (5)
O3 0.0187 (4) 0.0257 (5) 0.0288 (5) −0.0043 (4) 0.0015 (3) −0.0015 (4)

Geometric parameters (Å, °)

C1—C2 1.5145 (18) C8—C9 1.3802 (18)
C1—H1A 0.9800 C8—H8 0.9500
C1—H1B 0.9800 C9—C10 1.385 (2)
C1—H1C 0.9800 C9—H9 0.9500
C2—O1 1.4222 (16) C10—C11 1.374 (2)
C2—O2 1.4539 (15) C10—H10 0.9500
C2—C5 1.5396 (17) C11—C12 1.3912 (19)
C3—O1 1.4330 (17) C11—H11 0.9500
C3—C4 1.511 (2) C12—H12 0.9500
C3—H3A 0.9900 C13—C18 1.3914 (18)
C3—H3B 0.9900 C13—C14 1.3932 (17)
C4—O2 1.4402 (17) C14—C15 1.3879 (19)
C4—H4A 0.9900 C14—H14 0.9500
C4—H4B 0.9900 C15—C16 1.384 (2)
C5—C6 1.5422 (17) C15—H15 0.9500
C5—H5A 0.9900 C16—C17 1.372 (2)
C5—H5B 0.9900 C16—H16 0.9500
C6—O3 1.4416 (13) C17—C18 1.3940 (18)
C6—C13 1.5387 (16) C17—H17 0.9500
C6—C7 1.5398 (16) C18—H18 0.9500
C7—C12 1.3908 (18) O3—H1O 0.943 (8)
C7—C8 1.3914 (17)
C2—C1—H1A 109.5 C8—C7—C6 119.97 (11)
C2—C1—H1B 109.5 C9—C8—C7 121.39 (13)
H1A—C1—H1B 109.5 C9—C8—H8 119.3
C2—C1—H1C 109.5 C7—C8—H8 119.3
H1A—C1—H1C 109.5 C8—C9—C10 119.99 (13)
H1B—C1—H1C 109.5 C8—C9—H9 120.0
O1—C2—O2 105.42 (10) C10—C9—H9 120.0
O1—C2—C1 108.18 (10) C11—C10—C9 119.42 (13)
O2—C2—C1 108.96 (11) C11—C10—H10 120.3
O1—C2—C5 108.16 (10) C9—C10—H10 120.3
O2—C2—C5 110.03 (10) C10—C11—C12 120.71 (13)
C1—C2—C5 115.59 (11) C10—C11—H11 119.6
O1—C3—C4 102.69 (13) C12—C11—H11 119.6
O1—C3—H3A 111.2 C7—C12—C11 120.43 (13)
C4—C3—H3A 111.2 C7—C12—H12 119.8
O1—C3—H3B 111.2 C11—C12—H12 119.8
C4—C3—H3B 111.2 C18—C13—C14 117.86 (12)
H3A—C3—H3B 109.1 C18—C13—C6 123.64 (11)
O2—C4—C3 103.66 (11) C14—C13—C6 118.50 (11)
O2—C4—H4A 111.0 C15—C14—C13 121.21 (13)
C3—C4—H4A 111.0 C15—C14—H14 119.4
O2—C4—H4B 111.0 C13—C14—H14 119.4
C3—C4—H4B 111.0 C16—C15—C14 120.30 (13)
H4A—C4—H4B 109.0 C16—C15—H15 119.8
C2—C5—C6 119.34 (10) C14—C15—H15 119.8
C2—C5—H5A 107.5 C17—C16—C15 119.07 (13)
C6—C5—H5A 107.5 C17—C16—H16 120.5
C2—C5—H5B 107.5 C15—C16—H16 120.5
C6—C5—H5B 107.5 C16—C17—C18 121.00 (13)
H5A—C5—H5B 107.0 C16—C17—H17 119.5
O3—C6—C13 105.32 (8) C18—C17—H17 119.5
O3—C6—C7 110.19 (9) C13—C18—C17 120.55 (12)
C13—C6—C7 108.27 (10) C13—C18—H18 119.7
O3—C6—C5 109.66 (10) C17—C18—H18 119.7
C13—C6—C5 110.67 (9) C2—O1—C3 106.33 (10)
C7—C6—C5 112.48 (9) C4—O2—C2 108.53 (10)
C12—C7—C8 118.05 (11) C6—O3—H1O 105.7 (8)
C12—C7—C6 121.97 (11)
O1—C3—C4—O2 −30.56 (14) C7—C6—C13—C18 −104.24 (13)
O1—C2—C5—C6 −162.39 (10) C5—C6—C13—C18 19.46 (15)
O2—C2—C5—C6 −47.72 (14) O3—C6—C13—C14 −42.13 (14)
C1—C2—C5—C6 76.20 (14) C7—C6—C13—C14 75.73 (13)
C2—C5—C6—O3 57.28 (13) C5—C6—C13—C14 −160.56 (10)
C2—C5—C6—C13 173.04 (10) C18—C13—C14—C15 −0.58 (19)
C2—C5—C6—C7 −65.72 (14) C6—C13—C14—C15 179.44 (12)
O3—C6—C7—C12 −4.07 (16) C13—C14—C15—C16 −0.1 (2)
C13—C6—C7—C12 −118.77 (13) C14—C15—C16—C17 0.6 (2)
C5—C6—C7—C12 118.62 (12) C15—C16—C17—C18 −0.4 (2)
O3—C6—C7—C8 174.87 (10) C14—C13—C18—C17 0.75 (19)
C13—C6—C7—C8 60.17 (14) C6—C13—C18—C17 −179.28 (11)
C5—C6—C7—C8 −62.43 (15) C16—C17—C18—C13 −0.3 (2)
C12—C7—C8—C9 0.7 (2) O2—C2—O1—C3 −29.34 (13)
C6—C7—C8—C9 −178.28 (12) C1—C2—O1—C3 −145.78 (11)
C7—C8—C9—C10 −0.8 (2) C5—C2—O1—C3 88.33 (12)
C8—C9—C10—C11 0.3 (2) C4—C3—O1—C2 37.24 (14)
C9—C10—C11—C12 0.4 (2) C3—C4—O2—C2 13.39 (14)
C8—C7—C12—C11 0.0 (2) O1—C2—O2—C4 9.01 (13)
C6—C7—C12—C11 178.97 (12) C1—C2—O2—C4 124.92 (12)
C10—C11—C12—C7 −0.6 (2) C5—C2—O2—C4 −107.39 (12)
O3—C6—C13—C18 137.90 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H1O···O2 0.94 (1) 1.81 (1) 2.6820 (12) 153 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2121).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  4. Paulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Ed.50, 216–217.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053227/jh2121sup1.cif

e-66-0o225-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053227/jh2121Isup2.hkl

e-66-0o225-Isup2.hkl (167.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES