Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 19;66(Pt 1):o189. doi: 10.1107/S1600536809053513

3,6-Dimethyl-o-phenyl­enedimethanol

Humaira Yasmeen Gondal a, Muhammad Ali a, Alain Krief b, Muhammad Zia-ur-Rehman c,*
PMCID: PMC2980279  PMID: 21580073

Abstract

The title compound, C10H14O2, synthesized by reduction of 4,7-dimethyl-2-benzofuran-1,3-dione, crystallizes with two independant mol­ecules in the asymmetric unit, both showing an intra­molecular O—H⋯O hydrogen bond. The crystal packing is stabilized by O—H⋯O hydrogen bonds.

Related literature

For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007). For a related compound, see: Betz et al. (2009).graphic file with name e-66-0o189-scheme1.jpg

Experimental

Crystal data

  • C10H14O2

  • M r = 166.21

  • Monoclinic, Inline graphic

  • a = 9.5821 (7) Å

  • b = 8.7184 (7) Å

  • c = 11.7522 (9) Å

  • β = 107.810 (4)°

  • V = 934.73 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.33 × 0.10 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.974, T max = 0.994

  • 10452 measured reflections

  • 2468 independent reflections

  • 1296 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.121

  • S = 0.99

  • 2468 reflections

  • 225 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053513/bt5136sup1.cif

e-66-0o189-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053513/bt5136Isup2.hkl

e-66-0o189-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.89 2.706 (3) 174
O2—H2⋯O1 0.82 1.97 2.713 (4) 151
O3—H3⋯O4ii 0.82 1.90 2.709 (4) 167
O4—H4⋯O3 0.82 1.98 2.717 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for the X-ray analysis.

supplementary crystallographic information

Comment

In continuation of our work regarding the synthesis of various hetrocycles, structure of (3,6-dimethylbenzene-1,2-diyl) dimethanol has been determined. Such diols may act as good ligands for the chelation of (semi-)metals (Klüfers & Vogler, 2007). Bond lengths and bond angles of the title molecule (Scheme 1; Fig. 1) are almost similar to those in the related molecules (Betz et al., 2009).

Methyl groups at C7 & C10 are displaced by 0.71 (2)° and 0.85 (1)°, respectively, from the plane of the aromatic ring. Two independant asymmetric molecules exist in a unit cell and the benzylic oxygen of each molecule is involved in an intramolecular O—H···O hydrogen bond, forming a seven-membered hydrogen-bonded ring. Each molecule is centrosymmetrically linked to their adjacent ones through O—H···O hydrogen bonds (Table 1; Fig. 2).

Experimental

A mixture of 4,7-dimethyl-2-benzofuran-1,3-dione (0.176 g; 1.0 mmole), lithium aluminium hydride (0.042; 1.1 mmole), diethyl ether (20 ml) and tetrahydrofuran (20 ml) was refluxed for 15 h. Reaction mixture was than cooled and quenched with ice cooled water followed by the addition of aqueous sodium hydroxide (15%) to make the contents alkaline. Resulting solid was filtered off and washed with ether. Filtrate was concentrated to obtain (3,6-dimethylbenzene-1,2-diyl) dimethanol followed by its purification on silica gel column eluted by 60% diethyl ether in pentane.

Refinement

All H atoms were identified in a difference map and then were treated as riding (O—H = 0.82, C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C,O). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C10H14O2 F(000) = 360
Mr = 166.21 Dx = 1.181 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1602 reflections
a = 9.5821 (7) Å θ = 3.0–19.6°
b = 8.7184 (7) Å µ = 0.08 mm1
c = 11.7522 (9) Å T = 296 K
β = 107.810 (4)° Needle, colorless
V = 934.73 (12) Å3 0.33 × 0.10 × 0.07 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2468 independent reflections
Radiation source: fine-focus sealed tube 1296 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −7→12
Tmin = 0.974, Tmax = 0.994 k = −11→11
10452 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0276P] where P = (Fo2 + 2Fc2)/3
2468 reflections (Δ/σ)max < 0.001
225 parameters Δρmax = 0.11 e Å3
1 restraint Δρmin = −0.12 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1958 (4) 0.2892 (4) 0.2857 (3) 0.0643 (10)
C2 0.2068 (3) 0.4103 (4) 0.2113 (3) 0.0511 (8)
C3 0.1604 (3) 0.5579 (4) 0.2305 (2) 0.0492 (8)
C4 0.1010 (3) 0.5855 (4) 0.3226 (3) 0.0587 (9)
C5 0.0928 (4) 0.4638 (5) 0.3960 (3) 0.0776 (12)
H5 0.0555 0.4804 0.4593 0.093*
C6 0.1379 (4) 0.3208 (5) 0.3776 (3) 0.0747 (11)
H6 0.1297 0.2418 0.4283 0.090*
C7 0.2426 (5) 0.1270 (4) 0.2686 (4) 0.0982 (14)
H7A 0.2343 0.0635 0.3329 0.147*
H7B 0.3426 0.1276 0.2679 0.147*
H7C 0.1808 0.0872 0.1940 0.147*
C8 0.2641 (3) 0.3817 (4) 0.1068 (3) 0.0619 (9)
H8A 0.3412 0.4550 0.1094 0.074*
H8B 0.3063 0.2797 0.1137 0.074*
C9 0.1713 (3) 0.6851 (4) 0.1473 (3) 0.0590 (8)
H9A 0.1653 0.7829 0.1849 0.071*
H9B 0.2660 0.6798 0.1336 0.071*
C10 0.0458 (4) 0.7410 (5) 0.3464 (4) 0.0881 (12)
H10A −0.0084 0.7303 0.4025 0.132*
H10B −0.0169 0.7830 0.2730 0.132*
H10C 0.1275 0.8084 0.3788 0.132*
C11 0.7091 (4) 0.3069 (4) 0.2561 (3) 0.0623 (9)
C12 0.7047 (3) 0.4486 (3) 0.2009 (3) 0.0468 (8)
C13 0.6475 (3) 0.5778 (4) 0.2417 (2) 0.0492 (8)
C14 0.5941 (4) 0.5662 (5) 0.3388 (3) 0.0637 (9)
C15 0.6017 (4) 0.4238 (6) 0.3923 (3) 0.0825 (13)
H15 0.5667 0.4128 0.4575 0.099*
C16 0.6584 (4) 0.2998 (5) 0.3527 (3) 0.0823 (12)
H16 0.6630 0.2069 0.3926 0.099*
C17 0.7680 (5) 0.1632 (5) 0.2167 (4) 0.0967 (13)
H17A 0.7070 0.1350 0.1383 0.145*
H17B 0.7684 0.0817 0.2718 0.145*
H17C 0.8661 0.1812 0.2150 0.145*
C18 0.7569 (4) 0.4641 (4) 0.0932 (3) 0.0666 (10)
H18A 0.8277 0.5468 0.1065 0.080*
H18B 0.8060 0.3701 0.0830 0.080*
C19 0.6393 (4) 0.7281 (4) 0.1778 (3) 0.0647 (9)
H19A 0.6300 0.8108 0.2302 0.078*
H19B 0.7293 0.7441 0.1578 0.078*
C20 0.5287 (4) 0.7007 (6) 0.3852 (3) 0.0961 (14)
H20A 0.6055 0.7695 0.4271 0.144*
H20B 0.4777 0.6646 0.4388 0.144*
H20C 0.4614 0.7536 0.3195 0.144*
O1 0.1514 (2) 0.3950 (3) −0.00537 (16) 0.0669 (7)
H1 0.0877 0.3306 −0.0091 0.100*
O2 0.0586 (2) 0.6779 (3) 0.03506 (18) 0.0690 (7)
H2 0.0557 0.5913 0.0072 0.103*
O3 0.6404 (3) 0.4941 (3) −0.01344 (18) 0.0737 (7)
H3 0.5828 0.4219 −0.0275 0.110*
O4 0.5173 (2) 0.7319 (3) 0.07073 (19) 0.0743 (7)
H4 0.5311 0.6707 0.0223 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.069 (2) 0.057 (2) 0.059 (2) −0.0083 (18) 0.0079 (18) 0.0049 (17)
C2 0.0445 (17) 0.059 (2) 0.0453 (16) −0.0068 (16) 0.0071 (14) −0.0018 (15)
C3 0.0408 (17) 0.055 (2) 0.0472 (16) −0.0070 (15) 0.0069 (14) −0.0022 (15)
C4 0.0525 (19) 0.074 (2) 0.0494 (17) −0.0070 (17) 0.0154 (15) −0.0104 (19)
C5 0.076 (3) 0.110 (4) 0.054 (2) −0.017 (2) 0.031 (2) −0.009 (2)
C6 0.088 (3) 0.084 (3) 0.052 (2) −0.018 (2) 0.0213 (19) 0.012 (2)
C7 0.127 (4) 0.061 (3) 0.099 (3) −0.002 (2) 0.024 (3) 0.007 (2)
C8 0.056 (2) 0.069 (2) 0.0629 (19) 0.0007 (18) 0.0216 (17) −0.0039 (18)
C9 0.0588 (19) 0.056 (2) 0.0604 (18) −0.0109 (16) 0.0156 (16) −0.0021 (16)
C10 0.088 (3) 0.091 (3) 0.089 (3) 0.003 (2) 0.033 (2) −0.026 (2)
C11 0.060 (2) 0.058 (2) 0.063 (2) −0.0066 (17) 0.0096 (17) 0.0018 (18)
C12 0.0415 (17) 0.051 (2) 0.0468 (16) −0.0064 (14) 0.0112 (14) −0.0044 (14)
C13 0.0426 (17) 0.056 (2) 0.0446 (16) −0.0077 (15) 0.0077 (14) −0.0071 (15)
C14 0.054 (2) 0.086 (3) 0.0487 (17) −0.007 (2) 0.0122 (16) −0.017 (2)
C15 0.084 (3) 0.119 (4) 0.051 (2) −0.019 (3) 0.030 (2) 0.012 (2)
C16 0.094 (3) 0.077 (3) 0.069 (2) −0.016 (2) 0.016 (2) 0.018 (2)
C17 0.099 (3) 0.060 (3) 0.119 (3) 0.009 (2) 0.016 (2) −0.006 (2)
C18 0.061 (2) 0.081 (3) 0.0633 (19) −0.0088 (19) 0.0273 (18) −0.0105 (18)
C19 0.062 (2) 0.057 (2) 0.067 (2) −0.0059 (17) 0.0078 (17) −0.0033 (17)
C20 0.079 (3) 0.131 (4) 0.078 (2) 0.002 (3) 0.024 (2) −0.039 (3)
O1 0.0763 (16) 0.0749 (17) 0.0522 (12) −0.0081 (13) 0.0237 (12) −0.0041 (11)
O2 0.0688 (14) 0.0659 (15) 0.0631 (13) 0.0045 (12) 0.0067 (11) 0.0110 (12)
O3 0.0899 (19) 0.0789 (17) 0.0551 (13) −0.0164 (14) 0.0266 (13) −0.0036 (12)
O4 0.0759 (15) 0.0693 (16) 0.0693 (14) 0.0096 (12) 0.0097 (13) 0.0111 (12)

Geometric parameters (Å, °)

C1—C6 1.384 (5) C11—C17 1.504 (5)
C1—C2 1.396 (5) C12—C13 1.400 (4)
C1—C7 1.515 (5) C12—C18 1.503 (4)
C2—C3 1.402 (5) C13—C14 1.390 (5)
C2—C8 1.512 (4) C13—C19 1.500 (5)
C3—C4 1.389 (4) C14—C15 1.384 (6)
C3—C9 1.503 (4) C14—C20 1.508 (6)
C4—C5 1.385 (5) C15—C16 1.355 (6)
C4—C10 1.512 (5) C15—H15 0.9300
C5—C6 1.358 (6) C16—H16 0.9300
C5—H5 0.9300 C17—H17A 0.9600
C6—H6 0.9300 C17—H17B 0.9600
C7—H7A 0.9600 C17—H17C 0.9600
C7—H7B 0.9600 C18—O3 1.425 (4)
C7—H7C 0.9600 C18—H18A 0.9700
C8—O1 1.431 (3) C18—H18B 0.9700
C8—H8A 0.9700 C19—O4 1.432 (3)
C8—H8B 0.9700 C19—H19A 0.9700
C9—O2 1.428 (3) C19—H19B 0.9700
C9—H9A 0.9700 C20—H20A 0.9600
C9—H9B 0.9700 C20—H20B 0.9600
C10—H10A 0.9600 C20—H20C 0.9600
C10—H10B 0.9600 O1—H1 0.8200
C10—H10C 0.9600 O2—H2 0.8200
C11—C16 1.366 (5) O3—H3 0.8200
C11—C12 1.391 (4) O4—H4 0.8200
C6—C1—C2 117.6 (3) C12—C11—C17 123.8 (3)
C6—C1—C7 119.7 (3) C11—C12—C13 120.9 (3)
C2—C1—C7 122.7 (3) C11—C12—C18 120.2 (3)
C1—C2—C3 120.3 (3) C13—C12—C18 118.8 (3)
C1—C2—C8 120.1 (3) C14—C13—C12 120.2 (3)
C3—C2—C8 119.6 (3) C14—C13—C19 119.9 (3)
C4—C3—C2 120.7 (3) C12—C13—C19 119.8 (3)
C4—C3—C9 120.4 (3) C15—C14—C13 117.2 (3)
C2—C3—C9 119.0 (3) C15—C14—C20 120.2 (3)
C5—C4—C3 117.9 (3) C13—C14—C20 122.6 (4)
C5—C4—C10 118.8 (3) C16—C15—C14 122.1 (3)
C3—C4—C10 123.3 (3) C16—C15—H15 119.0
C6—C5—C4 121.5 (3) C14—C15—H15 119.0
C6—C5—H5 119.2 C15—C16—C11 122.1 (4)
C4—C5—H5 119.2 C15—C16—H16 119.0
C5—C6—C1 122.0 (3) C11—C16—H16 119.0
C5—C6—H6 119.0 C11—C17—H17A 109.5
C1—C6—H6 119.0 C11—C17—H17B 109.5
C1—C7—H7A 109.5 H17A—C17—H17B 109.5
C1—C7—H7B 109.5 C11—C17—H17C 109.5
H7A—C7—H7B 109.5 H17A—C17—H17C 109.5
C1—C7—H7C 109.5 H17B—C17—H17C 109.5
H7A—C7—H7C 109.5 O3—C18—C12 112.6 (3)
H7B—C7—H7C 109.5 O3—C18—H18A 109.1
O1—C8—C2 112.0 (3) C12—C18—H18A 109.1
O1—C8—H8A 109.2 O3—C18—H18B 109.1
C2—C8—H8A 109.2 C12—C18—H18B 109.1
O1—C8—H8B 109.2 H18A—C18—H18B 107.8
C2—C8—H8B 109.2 O4—C19—C13 111.3 (2)
H8A—C8—H8B 107.9 O4—C19—H19A 109.4
O2—C9—C3 112.7 (2) C13—C19—H19A 109.4
O2—C9—H9A 109.1 O4—C19—H19B 109.4
C3—C9—H9A 109.1 C13—C19—H19B 109.4
O2—C9—H9B 109.1 H19A—C19—H19B 108.0
C3—C9—H9B 109.1 C14—C20—H20A 109.5
H9A—C9—H9B 107.8 C14—C20—H20B 109.5
C4—C10—H10A 109.5 H20A—C20—H20B 109.5
C4—C10—H10B 109.5 C14—C20—H20C 109.5
H10A—C10—H10B 109.5 H20A—C20—H20C 109.5
C4—C10—H10C 109.5 H20B—C20—H20C 109.5
H10A—C10—H10C 109.5 C8—O1—H1 109.5
H10B—C10—H10C 109.5 C9—O2—H2 109.5
C16—C11—C12 117.4 (3) C18—O3—H3 109.5
C16—C11—C17 118.7 (3) C19—O4—H4 109.5
C6—C1—C2—C3 0.1 (4) C16—C11—C12—C13 −1.4 (5)
C7—C1—C2—C3 179.4 (3) C17—C11—C12—C13 179.6 (3)
C6—C1—C2—C8 −177.9 (3) C16—C11—C12—C18 −179.2 (3)
C7—C1—C2—C8 1.4 (5) C17—C11—C12—C18 1.8 (5)
C1—C2—C3—C4 −1.0 (4) C11—C12—C13—C14 0.1 (4)
C8—C2—C3—C4 177.0 (3) C18—C12—C13—C14 178.0 (3)
C1—C2—C3—C9 −178.9 (3) C11—C12—C13—C19 −177.9 (3)
C8—C2—C3—C9 −0.9 (4) C18—C12—C13—C19 0.0 (4)
C2—C3—C4—C5 1.6 (4) C12—C13—C14—C15 0.6 (4)
C9—C3—C4—C5 179.5 (3) C19—C13—C14—C15 178.6 (3)
C2—C3—C4—C10 −178.6 (3) C12—C13—C14—C20 −178.9 (3)
C9—C3—C4—C10 −0.7 (5) C19—C13—C14—C20 −0.9 (5)
C3—C4—C5—C6 −1.5 (5) C13—C14—C15—C16 0.0 (5)
C10—C4—C5—C6 178.7 (4) C20—C14—C15—C16 179.5 (4)
C4—C5—C6—C1 0.7 (6) C14—C15—C16—C11 −1.3 (6)
C2—C1—C6—C5 0.0 (5) C12—C11—C16—C15 2.0 (6)
C7—C1—C6—C5 −179.2 (4) C17—C11—C16—C15 −179.0 (4)
C1—C2—C8—O1 109.7 (3) C11—C12—C18—O3 110.9 (3)
C3—C2—C8—O1 −68.3 (4) C13—C12—C18—O3 −67.0 (4)
C4—C3—C9—O2 −101.5 (3) C14—C13—C19—O4 −99.6 (3)
C2—C3—C9—O2 76.5 (3) C12—C13—C19—O4 78.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.89 2.706 (3) 174
O2—H2···O1 0.82 1.97 2.713 (4) 151
O3—H3···O4ii 0.82 1.90 2.709 (4) 167
O4—H4···O3 0.82 1.98 2.717 (4) 150

Symmetry codes: (i) −x, y−1/2, −z; (ii) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5136).

References

  1. Betz, R., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, o479. [DOI] [PMC free article] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Klüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem.633, 908–912.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  6. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053513/bt5136sup1.cif

e-66-0o189-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053513/bt5136Isup2.hkl

e-66-0o189-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES