Abstract
Postnatal cat retinal ganglion cells (RGCs) were retrogradely labeled with fluorescent microspheres, dissociated from the retina using a peeling procedure, and monitored in cell culture with a time-lapse video microscopy system. The spatial patterns formed by the growing neurites were analyzed using conventional and fractal measures (Hausdorff dimension, H) of their extent and complexity. The results presented were obtained from the arborizations formed by the neurites of 48 labeled and isolated ganglion cells growing separate from each other and separate from a feeder layer of astrocytes. Cells were obtained from animals when the RGCs were postmitotic and after dendritic differentiation in vivo at age 0-1 week (4/48), 2-5 weeks (35/48), or 6-8 weeks (9/48). By 48 hr after plating, the number of surviving labeled RGCs was reduced to 22-28% of its initial value. After removal of all processes and isolation in vitro, these RGCs expressed neurite patterns strikingly similar to those seen in the intact retina, although the RGCs had been deprived of potential cues from the intact retina and target tissue. Self crossings of the growing neurites were rare (less than 0.5%, 20 cells, n = 2500 neurites). Calculation of the Hausdorff dimension, a metric for the space-filling capacity of the neurite patterns, revealed that after 3-day culture 77% (n = 56) of the RGCs achieved relatively uniform coverage of territory (1.6 less than H less than 1.9). This coverage was independent of the number of interbranchpoint segments and/or the total neurite length of a particular neurite pattern. A sample of dendritic arbors from RGCs in intact retina yielded similar values for the Hausdorff dimension (H = 1.73, SD = 0.12, n = 18, range 1.54-1.94). These results reveal that a mammalian central nervous system neuron, for at least 8 postnatal weeks, has the intrinsic capacity for reexpression of in vivo structure characteristic of that cell type in the absence of interaction with neighboring neurons, afferent input, and target tissue. These neurons exhibit stereotyped growth resulting in uniform coverage of a restricted territory by the strategic selection of the length, location, and orientation of interbranchpoint segments.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amthor F. R., Oyster C. W., Takahashi E. S. Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Res. 1984 Apr 23;298(1):187–190. doi: 10.1016/0006-8993(84)91167-3. [DOI] [PubMed] [Google Scholar]
- Banker G. A., Cowan W. M. Further observations on hippocampal neurons in dispersed cell culture. J Comp Neurol. 1979 Oct 1;187(3):469–493. doi: 10.1002/cne.901870302. [DOI] [PubMed] [Google Scholar]
- Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
- Banker G. A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science. 1980 Aug 15;209(4458):809–810. doi: 10.1126/science.7403847. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., White W. The survival and development of cholinergic neurons in potassium-enriched media. Brain Res. 1979 Sep 21;173(3):549–553. doi: 10.1016/0006-8993(79)90250-6. [DOI] [PubMed] [Google Scholar]
- Dann J. F., Buhl E. H., Peichl L. Dendritic maturation in cat retinal ganglion cells: a Lucifer yellow study. Neurosci Lett. 1987 Sep 11;80(1):21–26. doi: 10.1016/0304-3940(87)90488-5. [DOI] [PubMed] [Google Scholar]
- Dann J. F., Buhl E. H., Peichl L. Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. J Neurosci. 1988 May;8(5):1485–1499. doi: 10.1523/JNEUROSCI.08-05-01485.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dichter M. A. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 1978 Jun 30;149(2):279–293. doi: 10.1016/0006-8993(78)90476-6. [DOI] [PubMed] [Google Scholar]
- Eysel U. T., Peichl L., Wässle H. Dendritic plasticity in the early postnatal feline retina: quantitative characteristics and sensitive period. J Comp Neurol. 1985 Dec 1;242(1):134–145. doi: 10.1002/cne.902420109. [DOI] [PubMed] [Google Scholar]
- Famiglietti E. V., Jr, Kolb H. Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science. 1976 Oct 8;194(4261):193–195. doi: 10.1126/science.959847. [DOI] [PubMed] [Google Scholar]
- Fischbach G. D. Synaptic potentials recorded in cell cultures of nerve and muscle. Science. 1970 Sep 25;169(3952):1331–1333. doi: 10.1126/science.169.3952.1331. [DOI] [PubMed] [Google Scholar]
- Fukuda Y., Hsiao C. F., Watanabe M., Ito H. Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. J Neurophysiol. 1984 Dec;52(6):999–1013. doi: 10.1152/jn.1984.52.6.999. [DOI] [PubMed] [Google Scholar]
- Johns P. R., Rusoff A. C., Dubin M. W. Postnatal neurogenesis in the kitten retina. J Comp Neurol. 1979 Oct 1;187(3):545–555. doi: 10.1002/cne.901870306. [DOI] [PubMed] [Google Scholar]
- Katz L. C., Burkhalter A., Dreyer W. J. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature. 1984 Aug 9;310(5977):498–500. doi: 10.1038/310498a0. [DOI] [PubMed] [Google Scholar]
- Kriegstein A. R., Dichter M. A. Morphological classification of rat cortical neurons in cell culture. J Neurosci. 1983 Aug;3(8):1634–1647. doi: 10.1523/JNEUROSCI.03-08-01634.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leventhal A. G., Schall J. D., Ault S. J. Extrinsic determinants of retinal ganglion cell structure in the cat. J Neurosci. 1988 Jun;8(6):2028–2038. doi: 10.1523/JNEUROSCI.08-06-02028.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maslim J., Webster M., Stone J. Stages in the structural differentiation of retinal ganglion cells. J Comp Neurol. 1986 Dec 15;254(3):382–402. doi: 10.1002/cne.902540310. [DOI] [PubMed] [Google Scholar]
- McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry V. H., Linden R. Evidence for dendritic competition in the developing retina. Nature. 1982 Jun 24;297(5868):683–685. doi: 10.1038/297683a0. [DOI] [PubMed] [Google Scholar]
- Ramoa A. S., Campbell G., Shatz C. J. Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. J Neurosci. 1988 Nov;8(11):4239–4261. doi: 10.1523/JNEUROSCI.08-11-04239.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramoa A. S., Campbell G., Shatz C. J. Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science. 1987 Jul 31;237(4814):522–525. doi: 10.1126/science.3603038. [DOI] [PubMed] [Google Scholar]
- Saito H. A. Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. J Comp Neurol. 1983 Dec 10;221(3):279–288. doi: 10.1002/cne.902210304. [DOI] [PubMed] [Google Scholar]
- Scott B. S., Engelbert V. E., Fisher K. C. Morphological and electrophysiological characteristics of dissociated chick embryonic spinal ganglion cells in culture. Exp Neurol. 1969 Feb;23(2):230–248. doi: 10.1016/0014-4886(69)90060-0. [DOI] [PubMed] [Google Scholar]
- Scott B. S., Fisher K. C. Effect of choline, high potassium, and low sodium on the number of neurons in cultures of dissociated chick ganglia. Exp Neurol. 1971 May;31(2):183–188. doi: 10.1016/0014-4886(71)90186-5. [DOI] [PubMed] [Google Scholar]
- Scott B. S., Fisher K. C. Potassium concentration and number of neurons in cultures of dissociated ganglia. Exp Neurol. 1970 Apr;27(1):16–22. doi: 10.1016/0014-4886(70)90197-4. [DOI] [PubMed] [Google Scholar]
- Scott B. S. The effect of elevated potassium on the time course of neuron survival in cultures of dissociated dorsal root ganglia. J Cell Physiol. 1977 May;91(2):305–316. doi: 10.1002/jcp.1040910215. [DOI] [PubMed] [Google Scholar]
- Shiosaka S., Kiyama H., Tohyama M. A simple method for the separation of retinal sublayers from the entire retina with special reference to application for cell culture. J Neurosci Methods. 1984 Mar;10(3):229–235. doi: 10.1016/0165-0270(84)90059-1. [DOI] [PubMed] [Google Scholar]
- Stanford L. R., Sherman S. M. Structure/function relationships of retinal ganglion cells in the cat. Brain Res. 1984 Apr 16;297(2):381–386. doi: 10.1016/0006-8993(84)90580-8. [DOI] [PubMed] [Google Scholar]
- Stanford L. R. X-cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells. J Neurophysiol. 1987 Nov;58(5):940–964. doi: 10.1152/jn.1987.58.5.940. [DOI] [PubMed] [Google Scholar]
- Walsh C., Polley E. H., Hickey T. L., Guillery R. W. Generation of cat retinal ganglion cells in relation to central pathways. Nature. 1983 Apr 14;302(5909):611–614. doi: 10.1038/302611a0. [DOI] [PubMed] [Google Scholar]
- Wässle H., Peichl L., Boycott B. B. Dendritic territories of cat retinal ganglion cells. Nature. 1981 Jul 23;292(5821):344–345. doi: 10.1038/292344a0. [DOI] [PubMed] [Google Scholar]






