Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(18):7270–7274. doi: 10.1073/pnas.86.18.7270

Local influence of substrate molecules in determining distinctive growth patterns of identified neurons in culture.

S Grumbacher-Reinert 1
PMCID: PMC298039  PMID: 2780572

Abstract

The growth and branching patterns of individual identified leech neurons in culture depend upon the molecular composition of the substrate. These differences in morphology have been analyzed quantitatively for nerve cells growing on the plant lectin Con A, on extracellular matrix extract (ECM) containing laminin, and on patterned substrates. The total length of neurite outgrowth was about four times greater, and the number of branching points per unit length was three times smaller on ECM laminin extract than on Con A. Single cells placed on a sharp well-defined border separating Con A and ECM-laminin extract sprouted neurites rapidly on both sides of the border without showing preference for either substrate. An individual nerve cell produced neurites with markedly different structure on the two substrates--curved and thick, with a higher branching frequency on Con A, but straight and slender with a lower branching frequency on ECM-laminin substrate. Similar changes were seen in individual neurites that crossed from one substrate to the other. These results show that local contact of the neuron with a particular substrate induces a particular pattern of local outgrowth. Hence, molecules anchored in extracellular matrix could provide information for regenerating or developing axons regarding the type of branching pattern to be produced in that region.

Full text

PDF
7270

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Nicholls J. G. Patterns of regeneration between individual nerve cells in the central nervous system of the leech. Nature. 1971 Jul 23;232(5308):268–270. doi: 10.1038/232268a0. [DOI] [PubMed] [Google Scholar]
  2. Bray D., Bunge M. B., Chapman K. Geometry of isolated sensory neurons in culture. Effects of embryonic age and culture substratum. Exp Cell Res. 1987 Jan;168(1):127–137. doi: 10.1016/0014-4827(87)90422-8. [DOI] [PubMed] [Google Scholar]
  3. Carbonetto S., Gruver M. M., Turner D. C. Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates. J Neurosci. 1983 Nov;3(11):2324–2335. doi: 10.1523/JNEUROSCI.03-11-02324.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiquet M., Acklin S. E. Attachment of Con A or extracellular matrix initiates rapid sprouting by cultured leech neurons. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6188–6192. doi: 10.1073/pnas.83.16.6188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiquet M., Masuda-Nakagawa L., Beck K. Attachment to an endogenous laminin-like protein initiates sprouting by leech neurons. J Cell Biol. 1988 Sep;107(3):1189–1198. doi: 10.1083/jcb.107.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiquet M., Nicholls J. G. Neurite outgrowth and synapse formation by identified leech neurones in culture. J Exp Biol. 1987 Sep;132:191–206. doi: 10.1242/jeb.132.1.191. [DOI] [PubMed] [Google Scholar]
  7. Collins F., Garrett J. E., Jr Elongating nerve fibers are guided by a pathway of material released from embryonic nonneuronal cells. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6226–6228. doi: 10.1073/pnas.77.10.6226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietzel I. D., Drapeau P., Nicholls J. G. Voltage dependence of 5-hydroxytryptamine release at a synapse between identified leech neurones in culture. J Physiol. 1986 Mar;372:191–205. doi: 10.1113/jphysiol.1986.sp016004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldberg D. J., Schacher S. Differential growth of the branches of a regenerating bifurcate axon is associated with differential axonal transport of organelles. Dev Biol. 1987 Nov;124(1):35–40. doi: 10.1016/0012-1606(87)90456-8. [DOI] [PubMed] [Google Scholar]
  10. Hall D. E., Neugebauer K. M., Reichardt L. F. Embryonic neural retinal cell response to extracellular matrix proteins: developmental changes and effects of the cell substratum attachment antibody (CSAT). J Cell Biol. 1987 Mar;104(3):623–634. doi: 10.1083/jcb.104.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall J. C., Greenspan R. J. Genetic analysis of Drosophila neurobiology. Annu Rev Genet. 1979;13:127–195. doi: 10.1146/annurev.ge.13.120179.001015. [DOI] [PubMed] [Google Scholar]
  12. Hammarback J. A., McCarthy J. B., Palm S. L., Furcht L. T., Letourneau P. C. Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity. Dev Biol. 1988 Mar;126(1):29–39. doi: 10.1016/0012-1606(88)90235-7. [DOI] [PubMed] [Google Scholar]
  13. Hantaz-Ambroise D., Vigny M., Koenig J. Heparan sulfate proteoglycan and laminin mediate two different types of neurite outgrowth. J Neurosci. 1987 Aug;7(8):2293–2304. [PMC free article] [PubMed] [Google Scholar]
  14. Jellies J., Loer C. M., Kristan W. B., Jr Morphological changes in leech Retzius neurons after target contact during embryogenesis. J Neurosci. 1987 Sep;7(9):2618–2629. doi: 10.1523/JNEUROSCI.07-09-02618.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jessell T. M. Adhesion molecules and the hierarchy of neural development. Neuron. 1988 Mar;1(1):3–13. doi: 10.1016/0896-6273(88)90204-8. [DOI] [PubMed] [Google Scholar]
  16. Kuwada J. Y., Kramer A. P. Embryonic development of the leech nervous system: primary axon outgrowth of identified neurons. J Neurosci. 1983 Oct;3(10):2098–2111. doi: 10.1523/JNEUROSCI.03-10-02098.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
  18. Letourneau P. C. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev Biol. 1975 May;44(1):77–91. doi: 10.1016/0012-1606(75)90378-4. [DOI] [PubMed] [Google Scholar]
  19. Masuda-Nakagawa L., Beck K., Chiquet M. Identification of molecules in leech extracellular matrix that promote neurite outgrowth. Proc R Soc Lond B Biol Sci. 1988 Dec 22;235(1280):247–257. doi: 10.1098/rspb.1988.0074. [DOI] [PubMed] [Google Scholar]
  20. Pak W. L., Pinto L. H. Genetic approach to the study of the nervous system. Annu Rev Biophys Bioeng. 1976;5:397–448. doi: 10.1146/annurev.bb.05.060176.002145. [DOI] [PubMed] [Google Scholar]
  21. Raper J. A., Bastiani M., Goodman C. S. Pathfinding by neuronal growth cones in grasshopper embryos. I. Divergent choices made by the growth cones of sibling neurons. J Neurosci. 1983 Jan;3(1):20–30. doi: 10.1523/JNEUROSCI.03-01-00020.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raper J. A., Bastiani M., Goodman C. S. Pathfinding by neuronal growth cones in grasshopper embryos. II. Selective fasciculation onto specific axonal pathways. J Neurosci. 1983 Jan;3(1):31–41. doi: 10.1523/JNEUROSCI.03-01-00031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ross W. N., Aréchiga H., Nicholls J. G. Influence of substrate on the distribution of calcium channels in identified leech neurons in culture. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4075–4078. doi: 10.1073/pnas.85.11.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tomaselli K. J., Reichardt L. F., Bixby J. L. Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J Cell Biol. 1986 Dec;103(6 Pt 2):2659–2672. doi: 10.1083/jcb.103.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vielmetter J., Stuermer C. A. Goldfish retinal axons respond to position-specific properties of tectal cell membranes in vitro. Neuron. 1989 Apr;2(4):1331–1339. doi: 10.1016/0896-6273(89)90071-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES