Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Oct;86(19):7378–7381. doi: 10.1073/pnas.86.19.7378

gamma-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics.

G D Guthrie 1, C S Nicholson-Guthrie 1
PMCID: PMC298065  PMID: 2552441

Abstract

gamma-Aminobutyric acid (GABA), an amino acid, has been found in every class of living organisms. In higher organisms, GABA is a neurotransmitter and binds with high affinity and specificity to GABA receptors on neurons in a sodium-independent reaction that is saturable. The role of GABA in organisms lacking nervous tissue is not known. This report describes, in a strain of Pseudomonas fluorescens, a GABA uptake system with binding characteristics like those of the GABA (type A) brain receptor. The binding was saturable and specific for GABA, was sodium-independent, was of high affinity (Km = 65 nM), and was inhibited competitively by muscimol, a potent GABA analogue. The bacterial GABA system included a homogeneous binding site, and no cooperative interaction was found between sites. To our knowledge, such a system for GABA, or other neurotransmitters, in a bacterium has not been reported.

Full text

PDF
7378

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eldefrawi A. T., Eldefrawi M. E. Receptors for gamma-aminobutyric acid and voltage-dependent chloride channels as targets for drugs and toxicants. FASEB J. 1987 Oct;1(4):262–271. doi: 10.1096/fasebj.1.4.2443413. [DOI] [PubMed] [Google Scholar]
  2. Enna S. J., Gallagher J. P. Biochemical and electrophysiological characteristics of mammalian GABA receptors. Int Rev Neurobiol. 1983;24:181–212. doi: 10.1016/s0074-7742(08)60222-6. [DOI] [PubMed] [Google Scholar]
  3. Horng J. S., Wong D. T. gamma-Aminobutyric acid receptors in cerebellar membranes of rat brain after a treatment with Triton X-100. J Neurochem. 1979 May;32(5):1379–1386. doi: 10.1111/j.1471-4159.1979.tb11075.x. [DOI] [PubMed] [Google Scholar]
  4. Johnston G. A. Muscimol and the uptake of -aminobutyric acid by rat brain slices. Psychopharmacologia. 1971;22(3):230–233. doi: 10.1007/BF00401785. [DOI] [PubMed] [Google Scholar]
  5. Kahane S., Levitz R., Halpern Y. S. Specificity and regulation of gamma-aminobutyrate transport in Escherichia coli. J Bacteriol. 1978 Aug;135(2):295–299. doi: 10.1128/jb.135.2.295-299.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kay W. W., Gronlund A. F. Amino acid transport in Pseudomonas aeruginosa. J Bacteriol. 1969 Jan;97(1):273–281. doi: 10.1128/jb.97.1.273-281.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koshland D. E., Jr Bacterial chemotaxis in relation to neurobiology. Annu Rev Neurosci. 1980;3:43–75. doi: 10.1146/annurev.ne.03.030180.000355. [DOI] [PubMed] [Google Scholar]
  8. Krogsgaard-Larsen P., Johnston G. A. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975 Dec;25(6):797–802. doi: 10.1111/j.1471-4159.1975.tb04410.x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Minuk G. Y. Gamma-aminobutyric acid (GABA) production by eight common bacterial pathogens. Scand J Infect Dis. 1986;18(5):465–467. doi: 10.3109/00365548609032366. [DOI] [PubMed] [Google Scholar]
  11. Roth J., LeRoith D., Shiloach J., Rosenzweig J. L., Lesniak M. A., Havrankova J. The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers: implications for mammalian biology. N Engl J Med. 1982 Mar 4;306(9):523–527. doi: 10.1056/NEJM198203043060907. [DOI] [PubMed] [Google Scholar]
  12. Sueoka N., Chiang K. S., Kates J. R. Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol. 1967 Apr 14;25(1):47–66. doi: 10.1016/0022-2836(67)90278-1. [DOI] [PubMed] [Google Scholar]
  13. Turner A. J., Whittle S. R. Biochemical dissection of the gamma-aminobutyrate synapse. Biochem J. 1983 Jan 1;209(1):29–41. doi: 10.1042/bj2090029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES