Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Oct;86(19):7505–7509. doi: 10.1073/pnas.86.19.7505

Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous.

C J Kemp 1, C N Leary 1, N R Drinkwater 1
PMCID: PMC298093  PMID: 2798421

Abstract

Tfm (testicular feminization) mutant mice lack functional androgen receptors. By studying liver tumor development in Tfm mice, we have shown that the greater susceptibility of male mice relative to female mice for liver tumor induction by N,N-diethylnitrosamine is androgen receptor-dependent. C57BL/6J normal and Tfm mutant mice were injected at 12 days of age with N,N-diethylnitrosamine (0.2 mumol/g, i.p.), and liver tumors were enumerated in 50-week-old animals. Normal males averaged 20 liver tumors per animal; Tfm males, 0.7; normal females, 0.6; and Tfm/+ heterozygous females, 1.5. The androgen receptor gene and the Tfm mutation are X chromosome linked. Because of random X chromosome inactivation, hepatocytes from Tfm/+ heterozygous female mice are mosaic with respect to the expression of mutant or wild-type receptors. To determine if testosterone acts directly as a liver tumor promoter, through the androgen receptor in preneoplastic hepatocytes, or by an indirect mechanism, we chronically treated these mosaic female mice with testosterone and measured the androgen receptor content of the resulting tumors. B6C3F1 Tfm/+ mosaic and +/+ wild-type female mice were injected i.p. at 12 days of age with N,N-diethylnitrosamine (0.1 mumol/g) and ovariectomized at 8 weeks of age. Half of the mice of each group subsequently received biweekly s.c. injections of testosterone (0.15 mg per mouse) for 30 weeks. Tumor multiplicity was the same for wild-type and Tfm/+ mosaic females treated with testosterone (31-32 tumors per animal at 38 weeks of age) and was increased relative to females not treated with testosterone (13-17 tumors per animal at 50 weeks of age). Testosterone treatment did not significantly increase the percentage of androgen receptor-positive tumors in Tfm/+ mosaic females: 58% of the tumors from Tfm/+ mosaic females treated with testosterone were receptor positive compared to 48% in Tfm/+ females not treated with testosterone and 92% in wild-type females treated with testosterone. Finally, the number of androgen receptors in the majority of liver tumors examined was greatly decreased relative to the surrounding normal liver tissue. We conclude that liver tumor promotion by testosterone requires a functional androgen receptor in the intact animal. However, this promotion is not cell autonomous; that is, the response of the preneoplastic hepatocyte is not dependent on the expression of functional receptor in the target cell.

Full text

PDF
7505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi B., Ono S. Cytosol androgen receptor from kidney of normal and testicular feminized (Tfm) mice. Cell. 1974 Aug;2(4):205–212. doi: 10.1016/0092-8674(74)90012-9. [DOI] [PubMed] [Google Scholar]
  2. Brown T. R., Greene F. E., Bullock L. P., Bardin C. W. Effect of the Tfm locus on the hepatic ethylmorphine N-demethylase system in mice. Endocrinology. 1978 Oct;103(4):1374–1382. doi: 10.1210/endo-103-4-1374. [DOI] [PubMed] [Google Scholar]
  3. Dickson R. B., Lippman M. E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr Rev. 1987 Feb;8(1):29–43. doi: 10.1210/edrv-8-1-29. [DOI] [PubMed] [Google Scholar]
  4. Drews U. Direct and mediated effects of testosterone: the development of intersexes in sex reversed mosaic mice, heterozygous for testicular feminization. Anat Embryol (Berl) 1975 May 16;146(3):325–340. doi: 10.1007/BF00302178. [DOI] [PubMed] [Google Scholar]
  5. Drinkwater N. R., Ginsler J. J. Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice. Carcinogenesis. 1986 Oct;7(10):1701–1707. doi: 10.1093/carcin/7.10.1701. [DOI] [PubMed] [Google Scholar]
  6. Goldstein J. L., Wilson J. D. Studies on the pathogenesis of the pseudohermaphroditism in the mouse with testicular feminization. J Clin Invest. 1972 Jul;51(7):1647–1658. doi: 10.1172/JCI106966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grüneberg H. The glandular aspects of the tabby syndrome in the mouse. J Embryol Exp Morphol. 1971 Feb;25(1):1–19. [PubMed] [Google Scholar]
  8. Hanigan M. H., Kemp C. J., Ginsler J. J., Drinkwater N. R. Rapid growth of preneoplastic lesions in hepatocarcinogen-sensitive C3H/HeJ male mice relative to C57BL/6J male mice. Carcinogenesis. 1988 Jun;9(6):885–890. doi: 10.1093/carcin/9.6.885. [DOI] [PubMed] [Google Scholar]
  9. Henderson B. E., Ross R. K., Pike M. C., Casagrande J. T. Endogenous hormones as a major factor in human cancer. Cancer Res. 1982 Aug;42(8):3232–3239. [PubMed] [Google Scholar]
  10. Howell S., Wareham K. A., Williams E. D. Clonal origin of mouse liver cell tumors. Am J Pathol. 1985 Dec;121(3):426–432. [PMC free article] [PubMed] [Google Scholar]
  11. Isomaa V., Pajunen A. E., Bardin C. W., Jänne O. A. Nuclear androgen receptors in the mouse kidney: validation of a new assay. Endocrinology. 1982 Sep;111(3):833–843. doi: 10.1210/endo-111-3-833. [DOI] [PubMed] [Google Scholar]
  12. Lubahn D. B., Joseph D. R., Sullivan P. M., Willard H. F., French F. S., Wilson E. M. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science. 1988 Apr 15;240(4850):327–330. doi: 10.1126/science.3353727. [DOI] [PubMed] [Google Scholar]
  13. Lyon M. F., Hawkes S. G. X-linked gene for testicular feminization in the mouse. Nature. 1970 Sep 19;227(5264):1217–1219. doi: 10.1038/2271217a0. [DOI] [PubMed] [Google Scholar]
  14. McKeehan W. L., Adams P. S., Rosser M. P. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 1984 May;44(5):1998–2010. [PubMed] [Google Scholar]
  15. Mead J. E., Fausto N. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1558–1562. doi: 10.1073/pnas.86.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meyer W. J., 3rd, Migeon B. R., Migeon C. J. Locus on human X chromosome for dihydrotestosterone receptor and androgen insensitivity. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1469–1472. doi: 10.1073/pnas.72.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore M. R., Drinkwater N. R., Miller E. C., Miller J. A., Pitot H. C. Quantitative analysis of the time-dependent development of glucose-6-phosphatase-deficient foci in the livers of mice treated neonatally with diethylnitrosamine. Cancer Res. 1981 May;41(5):1585–1593. [PubMed] [Google Scholar]
  18. Nagasue N., Ito A., Yukaya H., Ogawa Y. Androgen receptors in hepatocellular carcinoma and surrounding parenchyma. Gastroenterology. 1985 Sep;89(3):643–647. doi: 10.1016/0016-5085(85)90463-9. [DOI] [PubMed] [Google Scholar]
  19. Nakamura T., Tomita Y., Hirai R., Yamaoka K., Kaji K., Ichihara A. Inhibitory effect of transforming growth factor-beta on DNA synthesis of adult rat hepatocytes in primary culture. Biochem Biophys Res Commun. 1985 Dec 31;133(3):1042–1050. doi: 10.1016/0006-291x(85)91241-0. [DOI] [PubMed] [Google Scholar]
  20. Noble R. L. The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res. 1977 Jun;37(6):1929–1933. [PubMed] [Google Scholar]
  21. Ohnishi S., Murakami T., Moriyama T., Mitamura K., Imawari M. Androgen and estrogen receptors in hepatocellular carcinoma and in the surrounding noncancerous liver tissue. Hepatology. 1986 May-Jun;6(3):440–443. doi: 10.1002/hep.1840060320. [DOI] [PubMed] [Google Scholar]
  22. Ostrowski J. L., Ingleton P. M., Underwood J. C., Parsons M. A. Increased hepatic androgen receptor expression in female rats during diethylnitrosamine liver carcinogenesis. A possible correlation with liver tumor development. Gastroenterology. 1988 May;94(5 Pt 1):1193–1200. doi: 10.1016/0016-5085(88)90012-1. [DOI] [PubMed] [Google Scholar]
  23. Rabes H. M., Bücher T., Hartmann A., Linke I., Dünnwald M. Clonal growth of carcinogen-induced enzyme-deficient preneoplastic cell populations in mouse liver. Cancer Res. 1982 Aug;42(8):3220–3227. [PubMed] [Google Scholar]
  24. Richman R. A., Claus T. H., Pilkis S. J., Friedman D. L. Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3589–3593. doi: 10.1073/pnas.73.10.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sholl S. A., Pomerantz S. M. Androgen receptors in the cerebral cortex of fetal female rhesus monkeys. Endocrinology. 1986 Oct;119(4):1625–1631. doi: 10.1210/endo-119-4-1625. [DOI] [PubMed] [Google Scholar]
  26. Smuckler E. A., Tata J. R. Changes in hepatic nuclear DNA-dependent RNA polymerase caused by growth hormone and triiodothyronine. Nature. 1971 Nov 5;234(5323):37–39. doi: 10.1038/234037a0. [DOI] [PubMed] [Google Scholar]
  27. To Y. C. Physiological and biochemical reviews of sex differences and carcinogenesis with particular reference to the liver. Adv Cancer Res. 1973;18:155–209. [PubMed] [Google Scholar]
  28. Toh Y. C. Effect of neonatal castration on liver tumor induction by N-2-fluorenylacetamide in suckling BALB/c mice. Carcinogenesis. 1981;2(11):1219–1221. doi: 10.1093/carcin/2.11.1219. [DOI] [PubMed] [Google Scholar]
  29. Vesselinovitch S. D. Certain aspects of hepatocarcinogenesis in the infant mouse model. Toxicol Pathol. 1987;15(2):221–228. doi: 10.1177/019262338701500216. [DOI] [PubMed] [Google Scholar]
  30. Vesselinovitch S. D., Itze L., Mihailovich N., Rao K. V. Modifying role of partial hepatectomy and gonadectomy in ethylnitrosourea-induced hepatocarcinogenesis. Cancer Res. 1980 May;40(5):1538–1542. [PubMed] [Google Scholar]
  31. Vintermyr O. K., Døskeland S. O. Characterization of the inhibitory effect of glucocorticoids on the DNA replication of adult rat hepatocytes growing at various cell densities. J Cell Physiol. 1989 Jan;138(1):29–37. doi: 10.1002/jcp.1041380106. [DOI] [PubMed] [Google Scholar]
  32. Wilkinson M. L., Iqbal M. J., Williams R. Characterisation of high affinity binding sites of androgens in primary hepatocellular carcinoma. Clin Chim Acta. 1985 Oct 31;152(1-2):105–113. doi: 10.1016/0009-8981(85)90181-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES