Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Oct;86(20):7741–7745. doi: 10.1073/pnas.86.20.7741

Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme.

M R Ehlers 1, E A Fox 1, D J Strydom 1, J F Riordan 1
PMCID: PMC298146  PMID: 2554286

Abstract

Angiotensin-converting enzyme (ACE; EC 3.4.15.1) is a zinc-containing dipeptidyl carboxypeptidase widely distributed in mammalian tissues and is thought to play a critical role in blood pressure regulation. Testis contains a unique, androgen-dependent ACE isozyme of unknown function. We have determined the cDNA sequence for human testicular ACE; it encodes a protein that is identical, from residue 37 to its C terminus, to the second half or C-terminal domain of the endothelial ACE sequence [Soubrier, F., Alhenc-Gelas, F., Hubert, C., Allegrini, J., John, M., Tregear, G. & Corvol, P. (1988) Proc. Natl. Acad. Sci. USA 85, 9386-9390]. The full-length human testis ACE cDNA was constructed from a composite of cloned cDNAs, obtained by a combination of (i) immunoscreening and hybridization screening of a human testicular cDNA library in lambda gt11 and (ii) hybridization screening of human testis cDNAs constructed with ACE-specific primers and amplified by the polymerase chain reaction. The protein sequence inferred consists of a 732-residue preprotein including a 31-residue signal peptide. The mature polypeptide has a molecular weight of 80,073. The testis enzyme contains the second of the two putative metal-binding sites (His-Glu-Met-Gly-His) identified in endothelial ACE. This indicates that the functionally active catalytic site is within the C-terminal domain of the endothelial enzyme, accounting for the previous finding that these two structurally dissimilar isozymes are virtually identical catalytically. Of 22 testis ACE cDNAs cloned and sequenced, 3 have unique 5' regions, consisting of inserted, deleted, or substituted sequences up to 328 base pairs long, which have apparently arisen by alternative pre-mRNA splicing.

Full text

PDF
7741

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg T., Sulner J., Lai C. Y., Soffer R. L. Immunohistochemical localization of two angiotensin I-converting isoenzymes in the reproductive tract of the male rabbit. J Histochem Cytochem. 1986 Jun;34(6):753–760. doi: 10.1177/34.6.3009604. [DOI] [PubMed] [Google Scholar]
  2. Brentjens J. R., Matsuo S., Andres G. A., Caldwell P. R., Zamboni L. Gametes contain angiotensin converting enzyme (kininase II). Experientia. 1986 Apr 15;42(4):399–402. doi: 10.1007/BF02118626. [DOI] [PubMed] [Google Scholar]
  3. Bünning P., Holmquist B., Riordan J. F. Functional residues at the active site of angiotensin converting enzyme. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1442–1449. doi: 10.1016/0006-291x(78)91382-7. [DOI] [PubMed] [Google Scholar]
  4. Cushman D. W., Cheung H. S. Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta. 1971 Oct;250(1):261–265. doi: 10.1016/0005-2744(71)90142-2. [DOI] [PubMed] [Google Scholar]
  5. Ehlers M. R., Maeder D. L., Kirsch R. E. Rapid affinity chromatographic purification of human lung and kidney angiotensin-converting enzyme with the novel N-carboxyalkyl dipeptide inhibitor N-[1(S)-carboxy-5-aminopentyl]glycylglycine. Biochim Biophys Acta. 1986 Sep 4;883(2):361–372. doi: 10.1016/0304-4165(86)90329-6. [DOI] [PubMed] [Google Scholar]
  6. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  7. El-Dorry H. A., Bull H. G., Iwata K., Thornberry N. A., Cordes E. H., Soffer R. L. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. J Biol Chem. 1982 Dec 10;257(23):14128–14133. [PubMed] [Google Scholar]
  8. El-Dorry H. A., MacGregor J. S., Soffer R. L. Dipeptidyl carboxypeptidase from seminal fluid resembles the pulmonary rather than the testicular isoenzyme. Biochem Biophys Res Commun. 1983 Sep 30;115(3):1096–1100. doi: 10.1016/s0006-291x(83)80048-5. [DOI] [PubMed] [Google Scholar]
  9. El-Dorry H. A., Pickett C. B., MacGregor J. S., Soffer R. L. Tissue-specific expression of mRNAs for dipeptidyl carboxypeptidase isoenzymes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4295–4297. doi: 10.1073/pnas.79.14.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hermo L., Dworkin J., Oko R. Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa. Am J Anat. 1988 Oct;183(2):107–124. doi: 10.1002/aja.1001830202. [DOI] [PubMed] [Google Scholar]
  12. Johnston C. I. Angiotensin converting-enzyme inhibitors--the balance sheet. Med J Aust. 1988 May 16;148(10):488–489. doi: 10.5694/j.1326-5377.1988.tb99453.x. [DOI] [PubMed] [Google Scholar]
  13. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lanzillo J. J., Stevens J., Dasarathy Y., Yotsumoto H., Fanburg B. L. Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. J Biol Chem. 1985 Dec 5;260(28):14938–14944. [PubMed] [Google Scholar]
  15. Loh E. Y., Elliott J. F., Cwirla S., Lanier L. L., Davis M. M. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science. 1989 Jan 13;243(4888):217–220. doi: 10.1126/science.2463672. [DOI] [PubMed] [Google Scholar]
  16. Pandey K. N., Misono K. S., Inagami T. Evidence for intracellular formation of angiotensins: coexistence of renin and angiotensin-converting enzyme in Leydig cells of rat testis. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1337–1343. doi: 10.1016/0006-291x(84)91238-5. [DOI] [PubMed] [Google Scholar]
  17. Pantoliano M. W., Holmquist B., Riordan J. F. Affinity chromatographic purification of angiotensin converting enzyme. Biochemistry. 1984 Feb 28;23(5):1037–1042. doi: 10.1021/bi00300a036. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shapiro R., Riordan J. F. Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry. 1983 Nov 8;22(23):5315–5321. doi: 10.1021/bi00292a010. [DOI] [PubMed] [Google Scholar]
  20. Soffer R. L., Berg T., Sulner J., Lai C. Y. Pulmonary and testicular angiotensin-converting isoenzymes. Clin Exp Hypertens A. 1987;9(2-3):229–234. doi: 10.3109/10641968709164182. [DOI] [PubMed] [Google Scholar]
  21. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strittmatter S. M., Snyder S. H. Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H]captopril. Endocrinology. 1984 Dec;115(6):2332–2341. doi: 10.1210/endo-115-6-2332. [DOI] [PubMed] [Google Scholar]
  23. Strittmatter S. M., Thiele E. A., De Souza E. B., Snyder S. H. Angiotensin-converting enzyme in the testis and epididymis: differential development and pituitary regulation of isozymes. Endocrinology. 1985 Oct;117(4):1374–1379. doi: 10.1210/endo-117-4-1374. [DOI] [PubMed] [Google Scholar]
  24. Strydom D. J., Harper J. W., Lobb R. R. Amino acid sequence of bovine brain derived class 1 heparin-binding growth factor. Biochemistry. 1986 Mar 11;25(5):945–951. doi: 10.1021/bi00353a001. [DOI] [PubMed] [Google Scholar]
  25. Velletri P. A., Aquilano D. R., Bruckwick E., Tsai-Morris C. H., Dufau M. L., Lovenberg W. Endocrinological control and cellular localization of rat testicular angiotensin-converting enzyme (EC 3.4.15.1). Endocrinology. 1985 Jun;116(6):2516–2522. doi: 10.1210/endo-116-6-2516. [DOI] [PubMed] [Google Scholar]
  26. Weare J. A., Gafford J. T., Lu H. S., Erdös E. G. Purification of human kidney angiotensin I converting enzyme using reverse-immunoadsorption chromatography. Anal Biochem. 1982 Jul 1;123(2):310–319. doi: 10.1016/0003-2697(82)90451-1. [DOI] [PubMed] [Google Scholar]
  27. Yotsumoto H., Sato S., Shibuya M. Localization of angiotensin converting enzyme (dipeptidyl carboxypeptidase) in swine sperm by immunofluorescence. Life Sci. 1984 Sep 17;35(12):1257–1261. doi: 10.1016/0024-3205(84)90096-1. [DOI] [PubMed] [Google Scholar]
  28. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]
  30. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES