Abstract
Two forms of erythropoietin, EPO-bi and EPO-tetra, with different biological activities were isolated from the culture medium of a recombinant Chinese hamster ovary cell line, B8-300, into which the human erythropoietin gene had been introduced. EPO-bi, an unusual form, showed only one-seventh the in vivo activity and 3 times higher in vitro activity of the previously described recombinant human EPO (standard EPO). In contrast, EPO-tetra showed both in vivo and in vitro activities comparable to those of the standard EPO. EPO-bi, EPO-tetra, and the standard EPO had the same amino acid composition and immunoreactivity. However, structural analyses of their N-linked sugar chains revealed that EPO-bi contains the biantennary complex type as the major sugar chain, while EPO-tetra and the standard EPO contain the tetraantennary complex type as the major sugar chain. From examination of various preparations of recombinant human EPO, we found a positive correlation between the in vivo activity of EPO and the ratio of tetraantennary to biantennary oligosaccharides. These results suggest that higher branching of the N-linked sugar chains is essential for effective expression of in vivo biological activity of EPO.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashwell G., Kawasaki T. A protein from mammalian liver that specifically binds galactose-terminated glycoproteins. Methods Enzymol. 1978;50:287–288. doi: 10.1016/0076-6879(78)50029-3. [DOI] [PubMed] [Google Scholar]
- Briggs D. W., Fisher J. W., George W. J. Hepatic clearance of intact and desialylated erythropoietin. Am J Physiol. 1974 Dec;227(6):1385–1388. doi: 10.1152/ajplegacy.1974.227.6.1385. [DOI] [PubMed] [Google Scholar]
- COTES P. M., BANGHAM D. R. Bio-assay of erythropoietin in mice made polycythaemic by exposure to air at a reduced pressure. Nature. 1961 Sep 9;191:1065–1067. doi: 10.1038/1911065a0. [DOI] [PubMed] [Google Scholar]
- Davis J. M., Arakawa T., Strickland T. W., Yphantis D. A. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry. 1987 May 5;26(9):2633–2638. doi: 10.1021/bi00383a034. [DOI] [PubMed] [Google Scholar]
- Dordal M. S., Wang F. F., Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology. 1985 Jun;116(6):2293–2299. doi: 10.1210/endo-116-6-2293. [DOI] [PubMed] [Google Scholar]
- Dubé S., Fisher J. W., Powell J. S. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem. 1988 Nov 25;263(33):17516–17521. [PubMed] [Google Scholar]
- Dufau M. L., Catt K. J., Tsuruhara T. Retention of in vitro biological activities by desialylated human luteinizing hormone and chorionic gonadotropin. Biochem Biophys Res Commun. 1971 Sep;44(5):1022–1029. doi: 10.1016/s0006-291x(71)80188-2. [DOI] [PubMed] [Google Scholar]
- Dunn C. D., Napier J. A. Technical comments on the bioassay of erythropoietin. Exp Hematol. 1978 Aug;6(7):577–584. [PubMed] [Google Scholar]
- Egrie J. C., Cotes P. M., Lane J., Gaines Das R. E., Tam R. C. Development of radioimmunoassays for human erythropoietin using recombinant erythropoietin as tracer and immunogen. J Immunol Methods. 1987 May 20;99(2):235–241. doi: 10.1016/0022-1759(87)90133-5. [DOI] [PubMed] [Google Scholar]
- Egrie J. C., Strickland T. W., Lane J., Aoki K., Cohen A. M., Smalling R., Trail G., Lin F. K., Browne J. K., Hines D. K. Characterization and biological effects of recombinant human erythropoietin. Immunobiology. 1986 Sep;172(3-5):213–224. doi: 10.1016/S0171-2985(86)80101-2. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg M. A., Glass G. A., Cunningham J. M., Bunn H. F. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7972–7976. doi: 10.1073/pnas.84.22.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldwasser E., Eliason J. F., Sikkema D. An assay for erythropoietin in vitro at the milliunit level. Endocrinology. 1975 Aug;97(2):315–323. doi: 10.1210/endo-97-2-315. [DOI] [PubMed] [Google Scholar]
- Goldwasser E., Kung C. K., Eliason J. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem. 1974 Jul 10;249(13):4202–4206. [PubMed] [Google Scholar]
- Graber S. E., Krantz S. B. Erythropoietin and the control of red cell production. Annu Rev Med. 1978;29:51–66. doi: 10.1146/annurev.me.29.020178.000411. [DOI] [PubMed] [Google Scholar]
- Guan J. L., Cao H., Rose J. K. Cell-surface expression of a membrane-anchored form of the human chorionic gonadotropin alpha subunit. J Biol Chem. 1988 Apr 15;263(11):5306–5313. [PubMed] [Google Scholar]
- Koeffler H. P., Goldwasser E. Erythropoietin radioimmunoassay in evaluating patients with polycythemia. Ann Intern Med. 1981 Jan;94(1):44–47. doi: 10.7326/0003-4819-94-1-44. [DOI] [PubMed] [Google Scholar]
- Krantz S. B., Goldwasser E. Specific binding of erythropoietin to spleen cells infected with the anemia strain of Friend virus. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7574–7578. doi: 10.1073/pnas.81.23.7574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWY P. H., KEIGHLEY G., BORSOOK H. Inactivation of erythropoietin by neuraminidase and by mild substitution reactions. Nature. 1960 Jan 9;185:102–103. doi: 10.1038/185102a0. [DOI] [PubMed] [Google Scholar]
- Lin F. K., Suggs S., Lin C. H., Browne J. K., Smalling R., Egrie J. C., Chen K. K., Fox G. M., Martin F., Stabinsky Z. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7580–7584. doi: 10.1073/pnas.82.22.7580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C. E., Rose J. K. Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding. J Biol Chem. 1988 Apr 25;263(12):5955–5960. [PubMed] [Google Scholar]
- Miyake T., Kung C. K., Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977 Aug 10;252(15):5558–5564. [PubMed] [Google Scholar]
- Recny M. A., Scoble H. A., Kim Y. Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. Identification of des-arginine 166 erythropoietin. J Biol Chem. 1987 Dec 15;262(35):17156–17163. [PubMed] [Google Scholar]
- Sairam M. R., Fleshner P. Inhibition of hormone-induced cyclic AMP production and steroidogenesis in interstitial cells by deglycosylated lutropin. Mol Cell Endocrinol. 1981 Apr;22(1):41–54. doi: 10.1016/0303-7207(81)90101-5. [DOI] [PubMed] [Google Scholar]
- Sairam M. R., Manjunath P. Hormonal antagonistic properties of chemically deglycosylated human choriogonadotropin. J Biol Chem. 1983 Jan 10;258(1):445–449. [PubMed] [Google Scholar]
- Sairam M. R., Manjunath P. Studies on pituitary follitropin. XI. Induction of hormonal antagonistic activity by chemical deglycosylation. Mol Cell Endocrinol. 1982 Oct;28(2):139–150. doi: 10.1016/0303-7207(82)90027-2. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Bothner B., Dell A., Fukuda M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem. 1987 Sep 5;262(25):12059–12076. [PubMed] [Google Scholar]
- Strickland T. W., Pierce J. G. The beta subunits of glycoprotein hormones. Formation of three-dimensional structure during cell-free biosynthesis of lutropin-beta. J Biol Chem. 1985 May 10;260(9):5816–5819. [PubMed] [Google Scholar]
- Takasaki S., Mizuochi T., Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol. 1982;83:263–268. doi: 10.1016/0076-6879(82)83019-x. [DOI] [PubMed] [Google Scholar]
- Takeuchi M., Takasaki S., Miyazaki H., Kato T., Hoshi S., Kochibe N., Kobata A. Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J Biol Chem. 1988 Mar 15;263(8):3657–3663. [PubMed] [Google Scholar]
- Tsuda E., Goto M., Murakami A., Akai K., Ueda M., Kawanishi G., Takahashi N., Sasaki R., Chiba H., Ishihara H. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins. Biochemistry. 1988 Jul 26;27(15):5646–5654. doi: 10.1021/bi00415a038. [DOI] [PubMed] [Google Scholar]
- Wojchowski D. M., Orkin S. H., Sytkowski A. J. Active human erythropoietin expressed in insect cells using a baculovirus vector: a role for N-linked oligosaccharide. Biochim Biophys Acta. 1987 Dec 8;910(3):224–232. doi: 10.1016/0167-4781(87)90114-x. [DOI] [PubMed] [Google Scholar]
- Yamashita K., Mizuochi T., Kobata A. Analysis of oligosaccharides by gel filtration. Methods Enzymol. 1982;83:105–126. doi: 10.1016/0076-6879(82)83008-5. [DOI] [PubMed] [Google Scholar]
