Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Oct;86(20):7984–7988. doi: 10.1073/pnas.86.20.7984

alar4, a constitutive mutant of the A system for amino acid transport, has increased abundance of the Na+,K+-ATPase and mRNA for alpha 1 subunit of this enzyme.

N X Qian 1, M Jones 1, A McDonough 1, E Englesberg 1
PMCID: PMC298197  PMID: 2554299

Abstract

A constitutive mutant, alar4, for the A system of amino acid transport, has increased activity and amount of the A system. This is accompanied by increased sensitivity to ouabain, as measured by efficiency of plating, and increased activity and abundance of the Na+,K+-ATPase that is present in the parental cell line, CHO-K1 (wild type). The latter was shown by increases in (i) ouabain-inhibitable 86Rb uptake in intact cells, (ii) ouabain-inhibitable ATPase activity in mixed membrane vesicles, and (iii) number of ouabain-binding sites and by similar Kd values for ouabain binding and K1/2 for ouabain inhibition of Na+,K+-ATPase as compared to the wild type. The increase in abundance of the Na+ pump is associated with a 4-fold increase in abundance of the mRNA for the alpha 1 subunit of the Na+,K+-ATPase. We could not detect mRNA for alpha 2 or alpha 3 or for the beta subunits. The increase in abundance of the A system and Na+,K+-ATPase is associated with a negligible increase in intracellular Na+ concentration. We propose that the increase in the abundance of the A system and the Na+,K+-ATPase is the result of a mutation in regulatory gene R1 that controls the A system and the Na+,K+-ATPase and is not due to a primary effect of a possible initial increase in Na+ concentration.

Full text

PDF
7984

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiton J. F., Lamb J. F. Effect of the serum concentration of the growth medium on the sodium pump site density of cultured HeLa cells. Q J Exp Physiol. 1984 Jan;69(1):97–115. doi: 10.1113/expphysiol.1984.sp002799. [DOI] [PubMed] [Google Scholar]
  2. Boardman L., Huett M., Lamb J. F., Newton J. P., Polson J. M. Evidence for the genetic control of the sodium pump density in HeLa cells. J Physiol. 1974 Sep;241(3):771–794. doi: 10.1113/jphysiol.1974.sp010684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowen J. W., McDonough A. Pretranslational regulation of Na-K-ATPase in cultured canine kidney cells by low K+. Am J Physiol. 1987 Feb;252(2 Pt 1):C179–C189. doi: 10.1152/ajpcell.1987.252.2.C179. [DOI] [PubMed] [Google Scholar]
  4. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  5. Collarini E. J., Oxender D. L. Mechanisms of transport of amino acids across membranes. Annu Rev Nutr. 1987;7:75–90. doi: 10.1146/annurev.nu.07.070187.000451. [DOI] [PubMed] [Google Scholar]
  6. Emanuel J. R., Garetz S., Stone L., Levenson R. Differential expression of Na+,K+-ATPase alpha- and beta-subunit mRNAs in rat tissues and cell lines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9030–9034. doi: 10.1073/pnas.84.24.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englesberg E., Moffett J. A genetic approach to the study of neutral amino acid transport in mammalian cells in culture. J Membr Biol. 1986;91(3):199–212. doi: 10.1007/BF01868814. [DOI] [PubMed] [Google Scholar]
  8. Ertsey R., Englesberg E. Recessive 2-(methylamino)-isobutyrate (MeAIB)-resistant mutant of Chinese hamster ovary cells (CHO-K1) with increased transport through ASC system. Somat Cell Mol Genet. 1984 Mar;10(2):171–182. doi: 10.1007/BF01534906. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  10. Graves J. S., Wheeler D. D. Increase in K+ and alpha-AIB active transport in CHO cells after low [K+] treatment. Am J Physiol. 1982 Sep;243(3):C124–C132. doi: 10.1152/ajpcell.1982.243.3.C124. [DOI] [PubMed] [Google Scholar]
  11. Hansen O. Interaction of cardiac glycosides with (Na+ + K+)-activated ATPase. A biochemical link to digitalis-induced inotropy. Pharmacol Rev. 1984 Sep;36(3):143–163. [PubMed] [Google Scholar]
  12. Hubert J. J., Schenk D. B., Skelly H., Leffert H. L. Rat hepatic (Na+, K+)-ATPase: alpha-subunit isolation by immunoaffinity chromatography and structural analysis by peptide mapping. Biochemistry. 1986 Jul 15;25(14):4156–4163. doi: 10.1021/bi00362a025. [DOI] [PubMed] [Google Scholar]
  13. Ismail-Beigi F., Pressley T. A., Haber R. S., Gick G. G., Loeb J. N., Edelman I. S. Kinetic analysis of Na,K-activated adenosine triphosphatase induced by low external K+ in a rat liver cell line. J Biol Chem. 1988 Jun 15;263(17):8162–8167. [PubMed] [Google Scholar]
  14. Kennedy B. G., Lever J. E. Regulation of Na+,K+-ATPase activity in MDCK kidney epithelial cell cultures: role of growth state, cyclic AMP, and chemical inducers of dome formation and differentiation. J Cell Physiol. 1984 Oct;121(1):51–63. doi: 10.1002/jcp.1041210108. [DOI] [PubMed] [Google Scholar]
  15. Kim D., Marsh J. D., Barry W. H., Smith T. W. Effects of growth in low potassium medium or ouabain on membrane Na,K-ATPase, cation transport, and contractility in cultured chick heart cells. Circ Res. 1984 Jul;55(1):39–48. doi: 10.1161/01.res.55.1.39. [DOI] [PubMed] [Google Scholar]
  16. Kletzien R. F., Pariza M. W., Becker J. E., Potter V. R. A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem. 1975 Oct;68(2):537–544. doi: 10.1016/0003-2697(75)90649-1. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
  19. Mendiaz E., Mamounas M., Moffett J., Englesberg E. A defined medium for and the effect of insulin on the growth, amino acid transport, and morphology of Chinese hamster ovary cells, CHO-K1 (CCL 61) and the isolation of insulin "independent" mutants. In Vitro Cell Dev Biol. 1986 Feb;22(2):66–74. doi: 10.1007/BF02623535. [DOI] [PubMed] [Google Scholar]
  20. Mendoza S. A., Wigglesworth N. M., Pohjanpelto P., Rozengurt E. Na entry and Na-K pump activity in murine, hamster, and human cells--effect of monensin, serum, platelet extract, and viral transformation. J Cell Physiol. 1980 Apr;103(1):17–27. doi: 10.1002/jcp.1041030104. [DOI] [PubMed] [Google Scholar]
  21. Moffett J., Curriden S., Ertsey R., Mendiaz E., Englesberg E. Alanine-resistant mutants of Chinese hamster ovary cells, CHO-K1, producing increases in velocity of proline transport through the A, ASC, and P systems. Somatic Cell Genet. 1983 Mar;9(2):189–213. doi: 10.1007/BF01543177. [DOI] [PubMed] [Google Scholar]
  22. Moffett J., Englesberg E. Recessive constitutive mutant Chinese hamster ovary cells (CHO-K1) with an altered A system for amino acid transport and the mechanism of gene regulation of the A system. Mol Cell Biol. 1984 Apr;4(4):799–808. doi: 10.1128/mcb.4.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moffett J., Englesberg E. Regulation of the A system of amino acid transport in Chinese hamster ovary cells, CHO-K1: the difference in specificity between the apo-repressor inactivator (apo-ri) and the transporter and the characterization of the proposed apo-ri. J Cell Physiol. 1986 Mar;126(3):421–429. doi: 10.1002/jcp.1041260313. [DOI] [PubMed] [Google Scholar]
  24. Moffett J., Jones M., Englesberg E. Amino acid transport in membrane vesicles from CHO-K1 and alanine-resistant transport mutants. Biochemistry. 1987 May 5;26(9):2487–2494. doi: 10.1021/bi00383a013. [DOI] [PubMed] [Google Scholar]
  25. Moffett J., Mendiaz E., Jones M., Englesberg E. Two membrane-bound proteins associated with alanine resistance and increased A-system amino acid transport in mutants of CHO-K1. Somat Cell Mol Genet. 1988 Jan;14(1):1–12. doi: 10.1007/BF01535044. [DOI] [PubMed] [Google Scholar]
  26. Moffett J., Périer F., Jones M., Englesberg E. Control of A-system amino acid transport by a second regulatory gene R2 in Chinese hamster ovary cells CHO-K1 and the possible connection of this gene with insulin activity. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8040–8043. doi: 10.1073/pnas.84.22.8040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orlowski J., Lingrel J. B. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem. 1988 Jul 25;263(21):10436–10442. [PubMed] [Google Scholar]
  28. Owen A. J., 3rd, Geyer R. P., Antoniades H. N. Human platelet-derived growth factor stimulates amino acid transport and protein synthesis by human diploid fibroblasts in plasma-free media. Proc Natl Acad Sci U S A. 1982 May;79(10):3203–3207. doi: 10.1073/pnas.79.10.3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pressley T. A., Haber R. S., Loeb J. N., Edelman I. S., Ismail-Beigi F. Stimulation of Na,K-activated adenosine triphosphatase and active transport by low external K+ in a rat liver cell line. J Gen Physiol. 1986 Apr;87(4):591–606. doi: 10.1085/jgp.87.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reznik V. M., Shapiro R. J., Mendoza S. A. Vasopressin stimulates DNA synthesis and ion transport in quiescent epithelial cells. Am J Physiol. 1985 Sep;249(3 Pt 1):C267–C270. doi: 10.1152/ajpcell.1985.249.3.C267. [DOI] [PubMed] [Google Scholar]
  31. Reznik V. M., Villela J., Mendoza S. A. Serum stimulates Na entry and the Na-K pump in quiescent cultures of epithelial cells (MDCK). J Cell Physiol. 1983 Nov;117(2):211–214. doi: 10.1002/jcp.1041170212. [DOI] [PubMed] [Google Scholar]
  32. Rosić N. K., Standaert M. L., Pollet R. J. The mechanism of insulin stimulation of (Na+,K+)-ATPase transport activity in muscle. J Biol Chem. 1985 May 25;260(10):6206–6212. [PubMed] [Google Scholar]
  33. Schmitt C. A., McDonough A. A. Developmental and thyroid hormone regulation of two molecular forms of Na+-K+-ATPase in brain. J Biol Chem. 1986 Aug 5;261(22):10439–10444. [PubMed] [Google Scholar]
  34. Schneider J. W., Mercer R. W., Gilmore-Hebert M., Utset M. F., Lai C., Greene A., Benz E. J., Jr Tissue specificity, localization in brain, and cell-free translation of mRNA encoding the A3 isoform of Na+,K+-ATPase. Proc Natl Acad Sci U S A. 1988 Jan;85(1):284–288. doi: 10.1073/pnas.85.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shull G. E., Greeb J., Lingrel J. B. Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry. 1986 Dec 16;25(25):8125–8132. doi: 10.1021/bi00373a001. [DOI] [PubMed] [Google Scholar]
  36. Sweadner K. J. Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem. 1979 Jul 10;254(13):6060–6067. [PubMed] [Google Scholar]
  37. Thompson C. C., Weinberger C., Lebo R., Evans R. M. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science. 1987 Sep 25;237(4822):1610–1614. doi: 10.1126/science.3629259. [DOI] [PubMed] [Google Scholar]
  38. Van Dyke R. W., Scharschmidt B. F. (Na,K)-ATPase-mediated cation pumping in cultured rat hepatocytes. Rapid modulation by alanine and taurocholate transport and characterization of its relationship to intracellular sodium concentration. J Biol Chem. 1983 Nov 10;258(21):12912–12919. [PubMed] [Google Scholar]
  39. Vara F., Schneider J. A., Rozengurt E. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2384–2388. doi: 10.1073/pnas.82.8.2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wolitzky B. A., Fambrough D. M. Regulation of the (Na+ + K+)-ATPase in cultured chick skeletal muscle. Modulation of expression by the demand for ion transport. J Biol Chem. 1986 Jul 25;261(21):9990–9999. [PubMed] [Google Scholar]
  41. Zibirre R., Poronnik P., Koch G. Na+-dependent amino acid transport is a major factor determining the rate of (Na+,K+)-ATPase mediated cation transport in intact HeLa cells. J Cell Physiol. 1986 Oct;129(1):85–93. doi: 10.1002/jcp.1041290113. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES