Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(21):8242–8246. doi: 10.1073/pnas.86.21.8242

Structural mimicry of adenosine by the antitumor agents 4-methoxy- and 4-amino-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine as viewed by a molecular modeling method.

A K Ghose 1, V N Viswanadhan 1, Y S Sanghvi 1, L D Nord 1, R C Willis 1, G R Revankar 1, R K Robins 1
PMCID: PMC298256  PMID: 2813389

Abstract

A rationale for the antitumor activity of 4-methoxy- and 4-amino-8-(beta-D-ribofuranosylamino)pyrimido-[5,4-d]pyrimidine (beta-MRPP and beta-ARPP, respectively) was studied by a molecular modeling method. Although these nucleoside analogues are structurally different from adenosine, they act as substrates for adenosine kinase. The molecular modeling method, which considered the three-dimensional structure and atom-based physicochemical properties of the nucleosides to quantify the molecular similarities, showed that certain low-energy conformations of the beta anomers of a series of nucleosides including beta-MRPP, beta-ARPP, and their 4-hydroxy, 4-amino-6-chloro, 4-methylthio-2,6-dichloro, 4,6-diamino, 4-dimethylamino, 4-methylamino, and 4-hydroxy-2,6-dichloro analogues have remarkable structural similarity to adenosine. The method also suggested that the selection of the reference compound adenosine in the structural comparison is of primary importance to gain insight into the observed antitumor activity. The success of the present method led to AM1 (Austin model 1) molecular orbital calculations and experimental studies indicating that the antitumor activity of the alpha anomer of ARPP is probably due to equilibration to the beta anomer. The AM1 calculation of the protonation energy of N5 of pyrimido[5,4-d]pyrimidines, which occupies the same position in space as the N1 of adenosine, gave a direct correlation between the basicity of the nitrogen with a lone pair of electrons and the observed antitumor activity.

Full text

PDF
8242

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bash P. A., Singh U. C., Brown F. K., Langridge R., Kollman P. A. Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science. 1987 Jan 30;235(4788):574–576. doi: 10.1126/science.3810157. [DOI] [PubMed] [Google Scholar]
  2. Bennet L. L., Jr, Hill D. L., Allan P. W. Inosine analogs as substrates for adenosine kinase--influence of ionization of the N-1 proton on the rate of phosphorylation. Biochem Pharmacol. 1978 Jan 1;27(1):83–87. doi: 10.1016/0006-2952(78)90260-5. [DOI] [PubMed] [Google Scholar]
  3. Bennett L. L., Jr, Hill D. L. Structural requirements for activity of nucleosides as substrates for adenosine kinase: orientation of substituents on the pentofuranosyl ring. Mol Pharmacol. 1975 Nov;11(6):803–808. [PubMed] [Google Scholar]
  4. Bennett L. L., Jr, Montgomery J. A., Brockman R. W., Shealy Y. F. Design of analogs of purine nucleosides with specifically altered activities as substrates for nucleoside- metabolizing enzymes. Adv Enzyme Regul. 1977 Oct 3;16:255–271. doi: 10.1016/0065-2571(78)90077-8. [DOI] [PubMed] [Google Scholar]
  5. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  6. Gerzon K., Johnson I. S., Boder G. B., Cline J. C., Simpson P. J., Speth C., Leonard N. J., Laursen R. A. Biological activities of 3-isoadenosine. Biochim Biophys Acta. 1966 Jun 22;119(3):445–461. doi: 10.1016/0005-2787(66)90120-1. [DOI] [PubMed] [Google Scholar]
  7. Ghose A. K., Crippen G. M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci. 1987 Feb;27(1):21–35. doi: 10.1021/ci00053a005. [DOI] [PubMed] [Google Scholar]
  8. Ghose A. K., Crippen G. M. General distance geometry three-dimensional receptor model for diverse dihydrofolate reductase inhibitors. J Med Chem. 1984 Jul;27(7):901–914. doi: 10.1021/jm00373a016. [DOI] [PubMed] [Google Scholar]
  9. Ghose A. K., Crippen G. M., Revankar G. R., McKernan P. A., Smee D. F., Robins R. K. Analysis of the in vitro antiviral activity of certain ribonucleosides against parainfluenza virus using a novel computer aided receptor modeling procedure. J Med Chem. 1989 Apr;32(4):746–756. doi: 10.1021/jm00124a005. [DOI] [PubMed] [Google Scholar]
  10. Marquez V. E., Lim M. I. Carbocyclic nucleosides. Med Res Rev. 1986 Jan-Mar;6(1):1–40. doi: 10.1002/med.2610060102. [DOI] [PubMed] [Google Scholar]
  11. Moss R. J., Petrie C. R., Meyer R. B., Jr, Nord L. D., Willis R. C., Smith R. A., Larson S. B., Kini G. D., Robins R. K. Synthesis, intramolecular hydrogen bonding, and biochemical studies of clitocine, a naturally occurring exocyclic amino nucleoside. J Med Chem. 1988 Apr;31(4):786–790. doi: 10.1021/jm00399a017. [DOI] [PubMed] [Google Scholar]
  12. Sanghvi Y. S., Larson S. B., Matsumoto S. S., Nord L. D., Smee D. F., Willis R. C., Avery T. L., Robins R. K., Revankar G. R. Antitumor and antiviral activity of synthetic alpha- and beta-ribonucleosides of certain substituted pyrimido[5,4-d]pyrimidines: a new synthetic strategy for exocyclic aminonucleosides. J Med Chem. 1989 Mar;32(3):629–637. doi: 10.1021/jm00123a022. [DOI] [PubMed] [Google Scholar]
  13. Schnebli H. P., Hill D. L., Bennett L. L., Jr Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J Biol Chem. 1967 May 10;242(9):1997–2004. [PubMed] [Google Scholar]
  14. Schweinsberg P. D., Smith R. G., Loo T. L. Identification of the metabolites of an antitumor tricyclic nucleoside (NSC-154020). Biochem Pharmacol. 1981 Sep 15;30(18):2521–2526. doi: 10.1016/0006-2952(81)90577-3. [DOI] [PubMed] [Google Scholar]
  15. Willis R. C., Nord L. D., Fujitaki J. M., Robins R. K. Potent and specific inhibitors of mammalian phosphoribosylpyrophosphate (PRPP) synthetase. Adv Enzyme Regul. 1989;28:167–182. doi: 10.1016/0065-2571(89)90070-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES