Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(21):8275–8279. doi: 10.1073/pnas.86.21.8275

In vivo synthesis of adenylylated bis(5'-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases.

A Brevet 1, J Chen 1, F Lévêque 1, P Plateau 1, S Blanquet 1
PMCID: PMC298263  PMID: 2554306

Abstract

The role of aminoacyl-tRNA synthetases in the in vivo synthesis of adenylylated bis(5'-nucleosidyl) tetraphosphates (Ap4N) was studied by measuring the concentration of these nucleotides in Escherichia coli cells overproducing lysyl-, methionyl- phenylalanyl-, or valyl-tRNA synthetase. Overproduction of each aminoacyl-tRNA synthetase (20- to 80-fold) was accompanied by a significant increase in intracellular Ap4N concentration (3- to 14-fold). As expected, non-adenylylated bis(5'-nucleosidyl) tetraphosphate concentration was not changed by synthetase overproduction. It was also verified that overproduction of an inactive methionyl-tRNA synthetase mutant did not modify Ap4N concentration. Ap4N accumulation during heat shock occurred in all strains studied. The increase factor (approximately 50-fold after 1 hr at 48 degrees C) was not changed by overproduction of any of the aminoacyl-tRNA synthetases studied, including that of the heat-inducible form of lysyl-tRNA synthetase from the lysU gene. Together, these results establish that aminoacyl-tRNA synthetases are involved in Ap4N biosynthesis during exponential growth as well as during heat shock.

Full text

PDF
8275

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. C., Jacobson M. K. Alteration of adenyl dinucleotide metabolism by environmental stress. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2350–2352. doi: 10.1073/pnas.83.8.2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker J. C., Jacobson M. K. Determination of diadenosine 5',5''',-P1,P4-tetraphosphate levels in cultured mammalian cells. Anal Biochem. 1984 Sep;141(2):451–460. doi: 10.1016/0003-2697(84)90070-8. [DOI] [PubMed] [Google Scholar]
  3. Baril E. F., Coughlin S. A., Zamecnik P. C. 5',5'''-P1, P4 diadenosine tetraphosphate (Ap4A): a putative initiator of DNA replication. Cancer Invest. 1985;3(5):465–471. doi: 10.3109/07357908509039808. [DOI] [PubMed] [Google Scholar]
  4. Blanquet S., Plateau P., Brevet A. The role of zinc in 5',5'-diadenosine tetraphosphate production by aminoacyl-transfer RNA synthetases. Mol Cell Biochem. 1983;52(1):3–11. doi: 10.1007/BF00230583. [DOI] [PubMed] [Google Scholar]
  5. Bochner B. R., Lee P. C., Wilson S. W., Cutler C. W., Ames B. N. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell. 1984 May;37(1):225–232. doi: 10.1016/0092-8674(84)90318-0. [DOI] [PubMed] [Google Scholar]
  6. Brevet A., Coste H., Fromant M., Plateau P., Blanquet S. Yeast diadenosine 5',5'''-P1,P4-tetraphosphate alpha,beta-phosphorylase behaves as a dinucleoside tetraphosphate synthetase. Biochemistry. 1987 Jul 28;26(15):4763–4768. doi: 10.1021/bi00389a025. [DOI] [PubMed] [Google Scholar]
  7. Brevet A., Plateau P., Best-Belpomme M., Blanquet S. Variation of Ap4A and other dinucleoside polyphosphates in stressed Drosophila cells. J Biol Chem. 1985 Dec 15;260(29):15566–15570. [PubMed] [Google Scholar]
  8. Cameselle J. C., Costas M. J., Günther Sillero M. A., Sillero A. Two low Km hydrolytic activities on dinucleoside 5',5"'-P1,P4-tetraphosphates in rat liver. Characterization as the specific dinucleoside tetraphosphatase and a phosphodiesterase I-like enzyme. J Biol Chem. 1984 Mar 10;259(5):2879–2885. [PubMed] [Google Scholar]
  9. Cassio D., Waller J. P. Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme. Eur J Biochem. 1971 May 28;20(2):283–300. doi: 10.1111/j.1432-1033.1971.tb01393.x. [DOI] [PubMed] [Google Scholar]
  10. Coste H., Brevet A., Plateau P., Blanquet S. Non-adenylylated bis(5'-nucleosidyl) tetraphosphates occur in Saccharomyces cerevisiae and in Escherichia coli and accumulate upon temperature shift or exposure to cadmium. J Biol Chem. 1987 Sep 5;262(25):12096–12103. [PubMed] [Google Scholar]
  11. Dardel F., Fayat G., Blanquet S. Molecular cloning and primary structure of the Escherichia coli methionyl-tRNA synthetase gene. J Bacteriol. 1984 Dec;160(3):1115–1122. doi: 10.1128/jb.160.3.1115-1122.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ducruix A., Hounwanou N., Reinbolt J., Boulanger Y., Blanquet S. Purification and reversible subunit dissociation of overproduced Escherichia coli phenylalanyl-tRNA synthetase. Biochim Biophys Acta. 1983 Nov 17;741(2):244–250. doi: 10.1016/0167-4781(83)90065-9. [DOI] [PubMed] [Google Scholar]
  13. Fayat G., Blanquet S., Dessen P., Batelier G., Waller J. P. The molecular weight and subunit composition of phenylalanyl-tRNA synthetase from Escherichia coli K-12. Biochimie. 1974;56(1):35–41. doi: 10.1016/s0300-9084(74)80353-6. [DOI] [PubMed] [Google Scholar]
  14. Fromant M., Fayat G., Laufer P., Blanquet S. Affinity chromatography of aminoacyl-tRNA syntheses on agarose-hexyl-adenosine-5'-phosphate. Biochimie. 1981 Jun;63(6):541–553. doi: 10.1016/s0300-9084(81)80087-9. [DOI] [PubMed] [Google Scholar]
  15. Goff S. A., Goldberg A. L. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell. 1985 Jun;41(2):587–595. doi: 10.1016/s0092-8674(85)80031-3. [DOI] [PubMed] [Google Scholar]
  16. Guranowski A., Blanquet S. Phosphorolytic cleavage of diadenosine 5',5'''-P1,P4-tetraphosphate. Properties of homogeneous diadenosine 5',5'''-P1,P4-tetraphosphate alpha, beta-phosphorylase from Saccharomyces cerevisiae. J Biol Chem. 1985 Mar 25;260(6):3542–3547. [PubMed] [Google Scholar]
  17. Guranowski A., Just G., Holler E., Jakubowski H. Synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate (AppppA) from adenosine 5'-phosphosulfate and adenosine 5'-triphosphate catalyzed by yeast AppppA phosphorylase. Biochemistry. 1988 Apr 19;27(8):2959–2964. doi: 10.1021/bi00408a044. [DOI] [PubMed] [Google Scholar]
  18. HOAGLAND M. B., KELLER E. B., ZAMECNIK P. C. Enzymatic carboxyl activation of amino acids. J Biol Chem. 1956 Jan;218(1):345–358. [PubMed] [Google Scholar]
  19. Hilderman R. H., Ortwerth B. J. A preferential role for lysyl-tRNA4 in the synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate by an arginyl-tRNA synthetase-lysyl-tRNA synthetase complex from rat liver. Biochemistry. 1987 Mar 24;26(6):1586–1591. doi: 10.1021/bi00380a015. [DOI] [PubMed] [Google Scholar]
  20. Hirel P. H., Lévêque F., Mellot P., Dardel F., Panvert M., Mechulam Y., Fayat G. Genetic engineering of methionyl-tRNA synthetase: in vitro regeneration of an active synthetase by proteolytic cleavage of a methionyl-tRNA synthetase--beta-galactosidase chimeric protein. Biochimie. 1988 Jun;70(6):773–782. doi: 10.1016/0300-9084(88)90107-1. [DOI] [PubMed] [Google Scholar]
  21. Härtlein M., Frank R., Madern D. Nucleotide sequence of Escherichia coli valyl-tRNA synthetase gene valS. Nucleic Acids Res. 1987 Nov 11;15(21):9081–9082. doi: 10.1093/nar/15.21.9081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krauspe R., Parthier B., Wasternack C. Synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate by organellar and cytoplasmic phenylalanyl-tRNA synthetases of Euglena gracilis. FEBS Lett. 1988 Aug 1;235(1-2):275–277. doi: 10.1016/0014-5793(88)81278-x. [DOI] [PubMed] [Google Scholar]
  23. Kukko-Kalske E., Heinonen J. Inorganic pyrophosphate and inorganic pyrophosphatase in Escherichia coli. Int J Biochem. 1985;17(5):575–580. doi: 10.1016/0020-711x(85)90288-5. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lawrence F., Blanquet S., Poiret M., Robert-Gero M., Waller J. P. The mechanism of action of methionyl-tRNA synthetase. 3. Ion requirements and kinetic parameters of the ATP-PPi exchange and methionine-transfer reactions catalyzed by the native and trypsin-modified enzymes. Eur J Biochem. 1973 Jul 2;36(1):234–243. doi: 10.1111/j.1432-1033.1973.tb02905.x. [DOI] [PubMed] [Google Scholar]
  26. Lee P. C., Bochner B. R., Ames B. N. Diadenosine 5',5"'-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. J Biol Chem. 1983 Jun 10;258(11):6827–6834. [PubMed] [Google Scholar]
  27. Mechulam Y., Blanquet S., Fayat G. Dual level control of the Escherichia coli pheST-himA operon expression. tRNA(Phe)-dependent attenuation and transcriptional operator-repressor control by himA and the SOS network. J Mol Biol. 1987 Oct 5;197(3):453–470. doi: 10.1016/0022-2836(87)90558-4. [DOI] [PubMed] [Google Scholar]
  28. Mechulam Y., Fromant M., Mellot P., Plateau P., Blanchin-Roland S., Fayat G., Blanquet S. Molecular cloning of the Escherichia coli gene for diadenosine 5',5'''-P1,P4-tetraphosphate pyrophosphohydrolase. J Bacteriol. 1985 Oct;164(1):63–69. doi: 10.1128/jb.164.1.63-69.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mellot P., Mechulam Y., Le Corre D., Blanquet S., Fayat G. Identification of an amino acid region supporting specific methionyl-tRNA synthetase: tRNA recognition. J Mol Biol. 1989 Aug 5;208(3):429–443. doi: 10.1016/0022-2836(89)90507-x. [DOI] [PubMed] [Google Scholar]
  30. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neidhardt F. C., VanBogelen R. A., Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. doi: 10.1146/annurev.ge.18.120184.001455. [DOI] [PubMed] [Google Scholar]
  32. Ogilvie A. Determination of diadenosine tetraphosphate (Ap4A) levels in subpicomole quantities by a phosphodiesterase luciferin--luciferase coupled assay: application as a specific assay for diadenosine tetraphosphatase. Anal Biochem. 1981 Aug;115(2):302–307. doi: 10.1016/0003-2697(81)90009-9. [DOI] [PubMed] [Google Scholar]
  33. Plateau P., Blanquet S. Zinc-dependent synthesis of various dinucleoside 5',5' ' '-P1,P3-Tri- or 5'',5' ' '-P1,P4-tetraphosphates by Escherichia coli lysyl-tRNA synthetase. Biochemistry. 1982 Oct 12;21(21):5273–5279. doi: 10.1021/bi00264a024. [DOI] [PubMed] [Google Scholar]
  34. Plateau P., Fromant M., Brevet A., Gesquière A., Blanquet S. Catabolism of bis(5'-nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5',5'''-P1,P4-tetraphosphate pyrophosphohydrolase. Biochemistry. 1985 Feb 12;24(4):914–922. doi: 10.1021/bi00325a016. [DOI] [PubMed] [Google Scholar]
  35. Plateau P., Fromant M., Kepes F., Blanquet S. Intracellular 5',5'-dinucleoside polyphosphate levels remain constant during the Escherichia coli cell cycle. J Bacteriol. 1987 Jan;169(1):419–422. doi: 10.1128/jb.169.1.419-422.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prescott M., Milne A. D., McLennan A. G. Characterization of the bis(5'-nucleosidyl) tetraphosphate pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia. Biochem J. 1989 May 1;259(3):831–838. doi: 10.1042/bj2590831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robinson A. K., Barnes L. D. Three diadenosine 5',5''-P1,P4-tetraphosphate hydrolytic enzymes from Physarum polycephalum with differential effects by calcium: a specific dinucleoside polyphosphate pyrophosphohydrolase, a nucleotide pyrophosphatase, and a phosphodiesterase. Arch Biochem Biophys. 1986 Aug 1;248(2):502–515. doi: 10.1016/0003-9861(86)90503-5. [DOI] [PubMed] [Google Scholar]
  39. Skogman S. G., Nilsson J. Molecular cloning and characterization of the gene for Escherichia coli valyl-tRNA synthetase. Gene. 1984 Oct;30(1-3):219–226. doi: 10.1016/0378-1119(84)90123-9. [DOI] [PubMed] [Google Scholar]
  40. Traut T. W. Synthesis of hybrid bisnucleoside 5',5"'-P1,P4-tetraphosphates by aminoacyl-tRNA synthetases. Mol Cell Biochem. 1987 May;75(1):15–21. doi: 10.1007/BF00231604. [DOI] [PubMed] [Google Scholar]
  41. VanBogelen R. A., Vaughn V., Neidhardt F. C. Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol. 1983 Feb;153(2):1066–1068. doi: 10.1128/jb.153.2.1066-1068.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zamecnik P. C., Stephenson M. L., Janeway C. M., Randerath K. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun. 1966 Jul 6;24(1):91–97. doi: 10.1016/0006-291x(66)90415-3. [DOI] [PubMed] [Google Scholar]
  43. Zamecnik P. Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A): its role in cellular metabolism. Anal Biochem. 1983 Oct 1;134(1):1–10. doi: 10.1016/0003-2697(83)90255-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES