Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(21):8462–8466. doi: 10.1073/pnas.86.21.8462

Male-enhanced antigen gene is phylogenetically conserved and expressed at late stages of spermatogenesis.

Y F Lau 1, K M Chan 1, R Sparkes 1
PMCID: PMC298302  PMID: 2813404

Abstract

The male-enhanced antigen gene (Mea) was previously isolated from a mouse testicular cDNA library by using a pool of specific antisera against the serological H-Y antigen. The present studies characterize the human and mouse cDNAs and indicate that the MEA gene is conserved at both nucleic acid and protein levels. The corresponding mRNA encodes proteins of 18-20 kDa. The phylogenetic conservation could be extended to other mammalian species by Southern blot analysis. Although the Mea gene was transcribed as a 1-kilobase mRNA in most tissues, it was expressed at the highest level in adult testis. The testis-enhanced expression of the Mea gene was associated with germ cell development at late stages of spermatogenesis. Chromosome walking experiments identified two linked genes, A and B, located within 38 kilobases of human genomic sequence. Like the MEA gene, genes A and B were coordinately transcribed in the testis, which suggests that MEA and genes A and B are members of a gene family. In situ hybridization studies localized the MEA gene to the short arm of human chromosome 6 at band p21.1-21.3, close to the major histocompatibility complex locus. The genetic conservation and testis-specific expression of the MEA gene support the hypothesis that it plays an important role in mammalian spermatogenesis and/or testis development.

Full text

PDF
8462

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett W. I., Gall A. M., Southard J. L., Sidman R. L. Abnormal spermiogenesis in quaking, a myelin-deficient mutant mouse. Biol Reprod. 1971 Aug;5(1):30–58. doi: 10.1093/biolreprod/5.1.30. [DOI] [PubMed] [Google Scholar]
  2. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  3. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgoyne P. S., Levy E. R., McLaren A. Spermatogenic failure in male mice lacking H-Y antigen. Nature. 1986 Mar 13;320(6058):170–172. doi: 10.1038/320170a0. [DOI] [PubMed] [Google Scholar]
  5. Cannizzaro L. A., Emanuel B. S. An improved method for G-banding chromosomes after in situ hybridization. Cytogenet Cell Genet. 1984;38(4):308–309. doi: 10.1159/000132079. [DOI] [PubMed] [Google Scholar]
  6. Cattanach B. M., Pollard C. E., Hawker S. G. Sex-reversed mice: XX and XO males. Cytogenetics. 1971;10(5):318–337. doi: 10.1159/000130151. [DOI] [PubMed] [Google Scholar]
  7. Eicher E. M., Washburn L. L. Genetic control of primary sex determination in mice. Annu Rev Genet. 1986;20:327–360. doi: 10.1146/annurev.ge.20.120186.001551. [DOI] [PubMed] [Google Scholar]
  8. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  9. Harper M. E., Saunders G. F. Localization of single copy DNA sequences of G-banded human chromosomes by in situ hybridization. Chromosoma. 1981;83(3):431–439. doi: 10.1007/BF00327364. [DOI] [PubMed] [Google Scholar]
  10. Kaufman R. J., Murtha P., Davies M. V. Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. 1987 Jan;6(1):187–193. doi: 10.1002/j.1460-2075.1987.tb04737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kozak M. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature. 1984 Mar 15;308(5956):241–246. doi: 10.1038/308241a0. [DOI] [PubMed] [Google Scholar]
  13. Kozak M. Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res. 1984 May 11;12(9):3873–3893. doi: 10.1093/nar/12.9.3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lau Y. F., Chan K. M., Kan Y. W., Goldberg E. Male-enhanced expression and genetic conservation of a gene isolated with an anti-H-Y antibody. Trans Assoc Am Physicians. 1987;100:45–53. [PubMed] [Google Scholar]
  15. Lau Y. F., Kan Y. W. Versatile cosmid vectors for the isolation, expression, and rescue of gene sequences: studies with the human alpha-globin gene cluster. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5225–5229. doi: 10.1073/pnas.80.17.5225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu C. C., Simonsen C. C., Levinson A. D. Initiation of translation at internal AUG codons in mammalian cells. Nature. 1984 May 3;309(5963):82–85. doi: 10.1038/309082a0. [DOI] [PubMed] [Google Scholar]
  17. Lyon M. F., Hawkes S. G. X-linked gene for testicular feminization in the mouse. Nature. 1970 Sep 19;227(5264):1217–1219. doi: 10.1038/2271217a0. [DOI] [PubMed] [Google Scholar]
  18. Roberts C. T., Jr, Lasky S. R., Lowe W. L., Jr, LeRoith D. Rat IGF-I cDNA's contain multiple 5'-untranslated regions. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1154–1159. doi: 10.1016/0006-291x(87)90768-6. [DOI] [PubMed] [Google Scholar]
  19. Schimenti J., Cebra-Thomas J. A., Decker C. L., Islam S. D., Pilder S. H., Silver L. M. A candidate gene family for the mouse t complex responder (Tcr) locus responsible for haploid effects on sperm function. Cell. 1988 Oct 7;55(1):71–78. doi: 10.1016/0092-8674(88)90010-4. [DOI] [PubMed] [Google Scholar]
  20. Searle A. G., Peters J., Lyon M. F., Evans E. P., Edwards J. H., Buckle V. J. Chromosome maps of man and mouse, III. Genomics. 1987 Sep;1(1):3–18. doi: 10.1016/0888-7543(87)90099-1. [DOI] [PubMed] [Google Scholar]
  21. Silver L. M., Kleene K. C., Distel R. J., Hecht N. B. Synthesis of mouse t complex proteins during haploid stages of spermatogenesis. Dev Biol. 1987 Feb;119(2):605–608. doi: 10.1016/0012-1606(87)90063-7. [DOI] [PubMed] [Google Scholar]
  22. Silver L. M. Mouse t haplotypes. Annu Rev Genet. 1985;19:179–208. doi: 10.1146/annurev.ge.19.120185.001143. [DOI] [PubMed] [Google Scholar]
  23. Sonderfeld-Fresko S., Proia R. L. Synthesis and assembly of a catalytically active lysosomal enzyme, beta-hexosaminidase B, in a cell-free system. J Biol Chem. 1988 Sep 15;263(26):13463–13469. [PubMed] [Google Scholar]
  24. Sorge J. A., West C., Kuhl W., Treger L., Beutler E. The human glucocerebrosidase gene has two functional ATG initiator codons. Am J Hum Genet. 1987 Dec;41(6):1016–1024. [PMC free article] [PubMed] [Google Scholar]
  25. Washburn L. L., Eicher E. M. Sex reversal in XY mice caused by dominant mutation on chromosome 17. Nature. 1983 May 26;303(5915):338–340. doi: 10.1038/303338a0. [DOI] [PubMed] [Google Scholar]
  26. Wu K. C., Chan K., Lee C. Y., Lau Y. F. Molecular isolation and sequence determination of the cDNA for the mouse sperm-specific lactate dehydrogenase-X gene. Biochem Biophys Res Commun. 1987 Aug 14;146(3):964–970. doi: 10.1016/0006-291x(87)90741-8. [DOI] [PubMed] [Google Scholar]
  27. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES