Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2665. doi: 10.1107/S1600536810038201

4-Methyl-9-[(4-methyl­phen­yl)sulfon­yl]thio­pyrano[3,4-b]indole-3(9H)-thione

Benjamin Dassonneville a, Dieter Schollmeyer a, Bernhard Witulski b, Heiner Detert a,*
PMCID: PMC2983115  PMID: 21587636

Abstract

The title compound, C19H15NO2S3, is the first example of a dithia analogue of pyrano[3,4-b]indolone. The almost planar thio­pyrano­indole­thione ring system (r.m.s. deviation for all non-H atoms = 0.030 Å) makes a dihedral angle of 80.70 (8)° with the p-tolyl ring. In the crystal, mol­ecules are connected via C—H⋯O hydrogen bonds into two chains along the b axis. These chains are connected via π–π inter­actions between symmetry-related thio­pyrano­indole­thione ring systems [centroid–centroid distance = 3.588 (1) Å].

Related literature

The title compound was synthesized as part of a larger project focusing on metal-catalysed transformations of tethered alkynyl-ynamides to carbazoles (Witulski & Alayrac, 2002) and to carbolines and other heteroannulated indoles (Nissen, 2008; Dassonneville, 2010). The reactivity of such an annulated thio­pyran­othione could be similar to the respective pyrano[3,4-b]indolone, well known as stable equivalents of indoloquinodimethanes (Plieninger et al., 1964) and valuable inter­mediates for the synthesis of various heteroannulated indoles, see, for example: Livadiotou et al. (2009).graphic file with name e-66-o2665-scheme1.jpg

Experimental

Crystal data

  • C19H15NO2S3

  • M r = 385.50

  • Monoclinic, Inline graphic

  • a = 13.2530 (4) Å

  • b = 8.2423 (3) Å

  • c = 15.4500 (16) Å

  • β = 96.124 (3)°

  • V = 1678.05 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.15 mm−1

  • T = 193 K

  • 0.60 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (de Meulenaer & Tompa, 1965) T min = 0.42, T max = 0.70

  • 3167 measured reflections

  • 3167 independent reflections

  • 2714 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.102

  • S = 1.04

  • 3167 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038201/bt5362sup1.cif

e-66-o2665-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038201/bt5362Isup2.hkl

e-66-o2665-Isup2.hkl (155.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O15i 0.95 2.50 3.387 (3) 155
C22—H22⋯O16ii 0.95 2.59 3.116 (3) 116

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The title compound is formed via a rhodium-catalyzed [2 + 2+2] cycloaddition of a tethered alkynyl-ynamide and carbon disulfide. This unprecedented thiopyranoindolethione is obtained as dark violet crystals. The crystal structure of the title compound forms a network built by two chains along the b axis connected via hydrogen bonds C21—H21···O15 (2.50 Å) and C22—H21···O16 (2.59 Å). These chains are connected viaπ-π-interactions of two thiopyranoindolethiones related by a center of symmetry [distance between centroids 3.588 (1) Å].

The tricyclic framework is essentially planar with torsion angles of about 2.1 ° or less in the benzene moiety and up to 5.9 ° in the thiopyrane unit. The torsion angle around the biphenyl bond amounts to 176.0 (2) ° (C6,C7,C8,C13). Whereas the N—C bonds in the pyrrole ring are nearly identical, the C—C bond lengths increase in the sequence C2—C7, C7—C8, C8—C13. With 1.459 (3) Å, the biphenyl bond C7—C8 is significantly longer than C2—C3 (1.384 (3) Å) and C8—C13 (1.443 (3) Å). The thiocarbonyl bond length is about 1.668 (2) Å, much shorter than the C—S single bonds with 1.729 (2) Å (C10—S11) and 1.702 (2) Å (S11—C12). Due to steric repulsion of methyl and thiocarbonyl, the S24—C10—S11 bond angle is reduced to 113.07 (13) ° and the C10—S11—C12 bond angle is only 107.07 (11) °.

Experimental

The title compound was prepared from 2-(propynyl)-N-ethynyl-N-[(4-methylphenyl)sulfonyl)]benzenamine (Witulski & Alayrac, 2002)) as follows: Under Argon (Ar), BINAP (15.6 mg, 0.025 mmol, 10 mol%) and [RhCl(C8H14)2]2 (6.1 mg, 0.0087 mmol, 3.5 mol%) are dissolved in degassed CH2Cl2 (3.0 ml) in a Schlenk tube, and the mixture is stirred at room temperature for 5 min. H2 is then introduced to the resulting solution. After stirring at room temperature for 0.5 h, the resulting solution is concentrated to dryness and the residue dissolved in dichloroethane (DCE) (3.0 ml). To this solution is added dropwise over 1 min a solution of the alkynyl-ynamide (0.25 mmol) and CS2 (150 µL, 2.5 mmol, 10 equiv.) in DCE (5.0 ml). Undissolved substrate is dissolved by addition of DCE (2x1.0 ml), added to the solution and the mixture is heated to 353 K. After completion of the reaction (3 h, TLC), the solvent is removed and the residue is purified by column chromatography (Al2O3, Petroleum ether/Ethyl acetate, 95/5). Violet crystals of the title compound suitable for X-ray analysis were obtained by crystallization from CH2Cl2/Petroleum ether.

Refinement

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98 Å (methyl groups). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Perspective view the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the packing diagram showing the hydrogen bonds and the π-π-interactions.

Crystal data

C19H15NO2S3 F(000) = 800
Mr = 385.50 Dx = 1.526 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 13.2530 (4) Å θ = 60–70°
b = 8.2423 (3) Å µ = 4.15 mm1
c = 15.4500 (16) Å T = 193 K
β = 96.124 (3)° Needle, violet
V = 1678.05 (19) Å3 0.60 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2714 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.0000
graphite θmax = 69.9°, θmin = 4.2°
ω/2θ scans h = 0→16
Absorption correction: numerical (de Meulenaer & Tompa, 1965) k = 0→10
Tmin = 0.42, Tmax = 0.70 l = −18→18
3167 measured reflections 3 standard reflections every 60 min
3167 independent reflections intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.8161P] where P = (Fo2 + 2Fc2)/3
3167 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.30393 (13) 0.4410 (2) 0.44134 (12) 0.0228 (4)
C2 0.29369 (15) 0.4317 (3) 0.53192 (14) 0.0230 (4)
C3 0.21571 (17) 0.4930 (3) 0.57513 (16) 0.0293 (5)
H3 0.1611 0.5518 0.5451 0.035*
C4 0.22049 (18) 0.4654 (3) 0.66365 (16) 0.0336 (5)
H4 0.1683 0.5064 0.6952 0.040*
C5 0.30000 (19) 0.3790 (3) 0.70717 (16) 0.0346 (5)
H5 0.3005 0.3596 0.7678 0.042*
C6 0.37865 (18) 0.3204 (3) 0.66405 (15) 0.0309 (5)
H6 0.4333 0.2625 0.6947 0.037*
C7 0.37639 (15) 0.3478 (2) 0.57428 (14) 0.0222 (4)
C8 0.44351 (15) 0.3017 (2) 0.50942 (14) 0.0211 (4)
C9 0.53663 (16) 0.2244 (3) 0.52013 (15) 0.0243 (4)
C10 0.58968 (16) 0.1801 (3) 0.44741 (16) 0.0263 (5)
S11 0.54433 (4) 0.23832 (8) 0.34297 (4) 0.03407 (17)
C12 0.43366 (17) 0.3397 (3) 0.34993 (15) 0.0303 (5)
H12 0.3984 0.3847 0.2987 0.036*
C13 0.39482 (15) 0.3576 (2) 0.42680 (14) 0.0217 (4)
S14 0.20305 (4) 0.46546 (6) 0.36740 (4) 0.02438 (15)
O15 0.15035 (12) 0.60556 (19) 0.39288 (12) 0.0353 (4)
O16 0.24145 (12) 0.4613 (2) 0.28475 (11) 0.0367 (4)
C17 0.12629 (15) 0.2950 (2) 0.37845 (13) 0.0194 (4)
C18 0.02728 (16) 0.3153 (3) 0.39707 (15) 0.0268 (5)
H18 0.0018 0.4205 0.4072 0.032*
C19 −0.03435 (16) 0.1799 (3) 0.40080 (15) 0.0276 (5)
H19 −0.1023 0.1931 0.4137 0.033*
C20 0.00193 (16) 0.0253 (3) 0.38587 (14) 0.0238 (4)
C21 0.10251 (16) 0.0078 (3) 0.36982 (14) 0.0254 (5)
H21 0.1288 −0.0977 0.3619 0.031*
C22 0.16513 (16) 0.1414 (3) 0.36515 (14) 0.0252 (5)
H22 0.2335 0.1283 0.3531 0.030*
C23 −0.06630 (18) −0.1206 (3) 0.38685 (16) 0.0301 (5)
H23A −0.1058 −0.1136 0.4368 0.045*
H23B −0.0250 −0.2195 0.3914 0.045*
H23C −0.1125 −0.1236 0.3329 0.045*
S24 0.69645 (4) 0.07193 (8) 0.45140 (5) 0.04028 (18)
C25 0.58643 (19) 0.1818 (3) 0.60888 (17) 0.0365 (6)
H25A 0.5844 0.2758 0.6475 0.055*
H25B 0.6572 0.1509 0.6048 0.055*
H25C 0.5503 0.0908 0.6324 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0188 (8) 0.0218 (9) 0.0278 (9) 0.0008 (7) 0.0021 (7) 0.0015 (7)
C2 0.0217 (10) 0.0168 (10) 0.0303 (11) −0.0057 (8) 0.0021 (8) −0.0027 (8)
C3 0.0239 (11) 0.0226 (11) 0.0419 (13) −0.0002 (9) 0.0058 (9) −0.0042 (10)
C4 0.0323 (12) 0.0306 (13) 0.0397 (13) −0.0057 (10) 0.0124 (10) −0.0098 (10)
C5 0.0410 (13) 0.0341 (13) 0.0299 (12) −0.0074 (11) 0.0089 (10) −0.0040 (10)
C6 0.0328 (12) 0.0296 (12) 0.0300 (11) −0.0031 (10) 0.0023 (9) 0.0013 (10)
C7 0.0225 (10) 0.0144 (10) 0.0295 (11) −0.0048 (8) 0.0021 (8) −0.0003 (8)
C8 0.0215 (10) 0.0142 (9) 0.0276 (10) −0.0039 (8) 0.0021 (8) 0.0010 (8)
C9 0.0207 (10) 0.0166 (10) 0.0354 (11) −0.0020 (8) 0.0014 (8) 0.0027 (9)
C10 0.0192 (10) 0.0168 (10) 0.0435 (13) −0.0028 (8) 0.0057 (9) 0.0016 (9)
S11 0.0296 (3) 0.0377 (3) 0.0369 (3) 0.0052 (2) 0.0126 (2) 0.0018 (3)
C12 0.0257 (11) 0.0360 (13) 0.0296 (11) 0.0038 (10) 0.0044 (9) 0.0049 (10)
C13 0.0185 (9) 0.0172 (10) 0.0293 (11) −0.0017 (8) 0.0020 (8) 0.0021 (8)
S14 0.0203 (3) 0.0180 (3) 0.0340 (3) −0.00007 (19) −0.0006 (2) 0.0073 (2)
O15 0.0286 (8) 0.0155 (8) 0.0602 (11) 0.0028 (7) −0.0026 (8) 0.0043 (7)
O16 0.0284 (8) 0.0483 (11) 0.0328 (9) −0.0043 (8) 0.0003 (7) 0.0169 (8)
C17 0.0197 (9) 0.0135 (10) 0.0245 (10) 0.0000 (8) 0.0005 (8) 0.0010 (8)
C18 0.0218 (10) 0.0175 (11) 0.0408 (12) 0.0042 (8) 0.0027 (9) −0.0034 (9)
C19 0.0217 (10) 0.0225 (11) 0.0394 (12) 0.0003 (9) 0.0066 (9) −0.0045 (9)
C20 0.0273 (11) 0.0193 (11) 0.0241 (10) −0.0005 (9) −0.0006 (8) −0.0012 (8)
C21 0.0295 (11) 0.0158 (10) 0.0305 (11) 0.0054 (9) 0.0008 (9) −0.0043 (9)
C22 0.0224 (10) 0.0233 (11) 0.0301 (11) 0.0047 (9) 0.0045 (8) −0.0014 (9)
C23 0.0346 (12) 0.0206 (11) 0.0345 (12) −0.0052 (9) 0.0011 (9) −0.0017 (9)
S24 0.0255 (3) 0.0312 (3) 0.0654 (4) 0.0079 (2) 0.0110 (3) 0.0038 (3)
C25 0.0316 (12) 0.0363 (14) 0.0401 (13) 0.0056 (11) −0.0034 (10) 0.0049 (11)

Geometric parameters (Å, °)

N1—C2 1.422 (3) C17—C22 1.390 (3)
N1—C13 1.425 (3) C18—C19 1.388 (3)
N1—S14 1.6756 (18) C19—C20 1.390 (3)
C2—C3 1.384 (3) C20—C21 1.389 (3)
C2—C7 1.398 (3) C20—C23 1.505 (3)
C3—C4 1.381 (3) C21—C22 1.385 (3)
C4—C5 1.385 (4) C3—H3 0.9500
C5—C6 1.383 (3) C4—H4 0.9500
C6—C7 1.403 (3) C5—H5 0.9500
C7—C8 1.459 (3) C6—H6 0.9500
C8—C9 1.383 (3) C12—H12 0.9500
C8—C13 1.443 (3) C18—H18 0.9500
C9—C10 1.435 (3) C19—H19 0.9500
C9—C25 1.499 (3) C21—H21 0.9500
C10—S24 1.668 (2) C22—H22 0.9500
C10—S11 1.729 (2) C23—H23A 0.9800
S11—C12 1.702 (2) C23—H23B 0.9800
C12—C13 1.352 (3) C23—H23C 0.9800
S14—O16 1.4245 (18) C25—H25A 0.9800
S14—O15 1.4265 (17) C25—H25B 0.9800
S14—C17 1.754 (2) C25—H25C 0.9800
C17—C18 1.383 (3)
C2—N1—C13 107.46 (17) C18—C19—C20 121.0 (2)
C2—N1—S14 121.62 (14) C21—C20—C19 118.7 (2)
C13—N1—S14 125.24 (15) C21—C20—C23 120.5 (2)
C3—C2—C7 122.9 (2) C19—C20—C23 120.8 (2)
C3—C2—N1 127.5 (2) C22—C21—C20 121.2 (2)
C7—C2—N1 109.56 (18) C21—C22—C17 118.86 (19)
C4—C3—C2 117.4 (2) C2—C3—H3 121.00
C3—C4—C5 121.2 (2) C4—C3—H3 121.00
C6—C5—C4 121.3 (2) C3—C4—H4 119.00
C5—C6—C7 118.8 (2) C5—C4—H4 119.00
C2—C7—C6 118.4 (2) C4—C5—H5 119.00
C2—C7—C8 108.18 (18) C6—C5—H5 119.00
C6—C7—C8 133.4 (2) C5—C6—H6 121.00
C9—C8—C13 124.2 (2) C7—C6—H6 121.00
C9—C8—C7 129.7 (2) S11—C12—H12 119.00
C13—C8—C7 106.06 (17) C13—C12—H12 119.00
C8—C9—C10 121.9 (2) C17—C18—H18 120.00
C8—C9—C25 121.2 (2) C19—C18—H18 120.00
C10—C9—C25 116.88 (19) C18—C19—H19 119.00
C9—C10—S24 126.28 (18) C20—C19—H19 120.00
C9—C10—S11 120.65 (16) C20—C21—H21 119.00
S24—C10—S11 113.07 (13) C22—C21—H21 119.00
C12—S11—C10 107.07 (11) C17—C22—H22 121.00
C13—C12—S11 121.37 (18) C21—C22—H22 121.00
C12—C13—N1 126.8 (2) C20—C23—H23A 109.00
C12—C13—C8 124.5 (2) C20—C23—H23B 109.00
N1—C13—C8 108.67 (18) C20—C23—H23C 109.00
O16—S14—O15 119.95 (11) H23A—C23—H23B 110.00
O16—S14—N1 105.83 (9) H23A—C23—H23C 109.00
O15—S14—N1 106.73 (10) H23B—C23—H23C 109.00
O16—S14—C17 109.53 (10) C9—C25—H25A 110.00
O15—S14—C17 108.39 (10) C9—C25—H25B 109.00
N1—S14—C17 105.43 (9) C9—C25—H25C 109.00
C18—C17—C22 121.02 (19) H25A—C25—H25B 109.00
C18—C17—S14 119.77 (16) H25A—C25—H25C 109.00
C22—C17—S14 119.17 (16) H25B—C25—H25C 109.00
C17—C18—C19 119.2 (2)
C13—N1—C2—C3 −178.6 (2) S11—C12—C13—C8 3.1 (3)
S14—N1—C2—C3 −24.0 (3) C2—N1—C13—C12 −178.9 (2)
C13—N1—C2—C7 1.1 (2) S14—N1—C13—C12 27.6 (3)
S14—N1—C2—C7 155.80 (15) C2—N1—C13—C8 −2.3 (2)
C7—C2—C3—C4 −1.5 (3) S14—N1—C13—C8 −155.83 (15)
N1—C2—C3—C4 178.3 (2) C9—C8—C13—C12 0.7 (3)
C2—C3—C4—C5 −0.3 (3) C7—C8—C13—C12 179.3 (2)
C3—C4—C5—C6 1.5 (4) C9—C8—C13—N1 −176.00 (19)
C4—C5—C6—C7 −0.9 (4) C7—C8—C13—N1 2.6 (2)
C3—C2—C7—C6 2.1 (3) C2—N1—S14—O16 −177.20 (16)
N1—C2—C7—C6 −177.71 (18) C13—N1—S14—O16 −27.17 (19)
C3—C2—C7—C8 −179.74 (19) C2—N1—S14—O15 53.96 (18)
N1—C2—C7—C8 0.5 (2) C13—N1—S14—O15 −156.01 (17)
C5—C6—C7—C2 −0.8 (3) C2—N1—S14—C17 −61.18 (18)
C5—C6—C7—C8 −178.5 (2) C13—N1—S14—C17 88.86 (18)
C2—C7—C8—C9 176.6 (2) O16—S14—C17—C18 −124.30 (18)
C6—C7—C8—C9 −5.6 (4) O15—S14—C17—C18 8.3 (2)
C2—C7—C8—C13 −1.9 (2) N1—S14—C17—C18 122.24 (18)
C6—C7—C8—C13 176.0 (2) O16—S14—C17—C22 53.38 (19)
C13—C8—C9—C10 −5.5 (3) O15—S14—C17—C22 −174.07 (17)
C7—C8—C9—C10 176.3 (2) N1—S14—C17—C22 −60.09 (19)
C13—C8—C9—C25 175.0 (2) C22—C17—C18—C19 −1.2 (3)
C7—C8—C9—C25 −3.2 (3) S14—C17—C18—C19 176.40 (17)
C8—C9—C10—S24 −173.91 (17) C17—C18—C19—C20 −0.2 (3)
C25—C9—C10—S24 5.6 (3) C18—C19—C20—C21 2.1 (3)
C8—C9—C10—S11 5.9 (3) C18—C19—C20—C23 −177.8 (2)
C25—C9—C10—S11 −174.60 (17) C19—C20—C21—C22 −2.5 (3)
C9—C10—S11—C12 −2.1 (2) C23—C20—C21—C22 177.3 (2)
S24—C10—S11—C12 177.70 (12) C20—C21—C22—C17 1.2 (3)
C10—S11—C12—C13 −2.2 (2) C18—C17—C22—C21 0.8 (3)
S11—C12—C13—N1 179.22 (17) S14—C17—C22—C21 −176.89 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C21—H21···O15i 0.95 2.50 3.387 (3) 155
C22—H22···O16ii 0.95 2.59 3.116 (3) 116

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5362).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Dassonneville, B. (2010). PhD thesis, University Mainz, Germany.
  3. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  4. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  5. Livadiotou, D., Tsoleridis, C. A. & Stephanidou-Stephanatou, J. (2009). Synthesis, 15, 2579–2583.
  6. Meulenaer, J. de & Tompa, H. (1965). Acta Cryst.19, 1014–1018.
  7. Nissen, F. (2008). PhD thesis, University Mainz, Germany.
  8. Plieninger, H., Mueller, W. & Weinerth, K. (1964). Chem. Ber.97, 667–681.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Witulski, B. & Alayrac, C. (2002). Angew. Chem. Int. Ed.41, 3281–3284. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038201/bt5362sup1.cif

e-66-o2665-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038201/bt5362Isup2.hkl

e-66-o2665-Isup2.hkl (155.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES