Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 4;66(Pt 10):o2477. doi: 10.1107/S1600536810035129

(2E)-3-(1,3-Benzodioxol-5-yl)-1-(3-bromo-2-thien­yl)prop-2-en-1-one

William T A Harrison a,*, C S Chidan Kumar b, H S Yathirajan b, B V Ashalatha c, B Narayana c
PMCID: PMC2983118  PMID: 21587478

Abstract

In the title mol­ecule, C14H9BrO3S, the the prop-2-en-1-one (enone) fragment is close to planar [C—C—C—O = 2.5 (7)°] and it subtends dihedral angles of 12.5 (3) and 5.3 (4)° with respect to the thio­phene and benzene rings, respectively. The dihedral angle between the aromatic ring systems is 12.60 (18)°. Two C—H⋯O inter­actions help to consolidate the non-centrosymmetic crystal packing, which features undulating (100) sheets incorporating C(11) and C(12) chain motifs.

Related literature

For related structures, see: Butcher et al. (2007); Harrison et al. (2006, 2007); Yathirajan et al. (2006a ,b ,c ). For background to chalcone derivatives as non-linear optical materials, see: Sarojini et al. (2006). For reference structural data, see: Allen et al. (1987).graphic file with name e-66-o2477-scheme1.jpg

Experimental

Crystal data

  • C14H9BrO3S

  • M r = 337.18

  • Monoclinic, Inline graphic

  • a = 4.0013 (3) Å

  • b = 11.0211 (9) Å

  • c = 14.6931 (11) Å

  • β = 95.781 (2)°

  • V = 644.65 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 291 K

  • 0.48 × 0.16 × 0.09 mm

Data collection

  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.296, T max = 0.753

  • 4452 measured reflections

  • 2684 independent reflections

  • 2180 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.091

  • S = 0.94

  • 2684 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983), 1127 Friedel pairs

  • Flack parameter: 0.057 (11)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035129/su2204sup1.cif

e-66-o2477-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035129/su2204Isup2.hkl

e-66-o2477-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.51 3.420 (6) 167
C14—H14A⋯O1ii 0.97 2.44 3.400 (6) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

CSC thanks the Department of Studies in Chemistry, University of Mysore, for the provision of research facilities.

supplementary crystallographic information

Comment

The title compound (Fig. 1), was prepared as part of our ongoing synthetic and structural studies of molecules containing thienyl and aromatic rings linked by an enone bridge as possible non-linear optical materials (Sarojini et al., 2006). The crystal structures of (2E)-1-(3-bromo-2-thienyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one (Yathirajan et al., 2006a), (2E)-1-(3-bromo-2-thienyl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one (Yathirajan et al., 2006b), (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxy-2,3,6-trimethylphenyl)prop-2-en-1-one (Yathirajan et al., 2006c), (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Harrison et al., 2006), 1-(3-bromo-2-thienyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (Butcher et al., 2007), (2E)-1-(3-bromo-2-thienyl)-3-(4-nitrophenyl)prop-2-en-1-one (Harrison et al., 2007) have been reported previously.

The C4—C3—Br1 angle in the title molecule of 127.0 (3)° is significantly larger than angle C2—C3—Br1 [118.3 (3)°], perhaps due to steric repulsion between atoms Br1 and H6 (H···Br = 2.75 Å), as also seen in a related structure (Harrison et al., 2007). Br1 is displaced from the C1—C4/S1 ring mean plane by 0.047 (6) Å.

The enone fragment is close to planar [O1—C5—C6—C7 = 2.5 (7)°] and it subtends dihedral angles of 12.5 (3)° and 5.3 (4)°, respectively, with respect to the adjacent thienyl (C1—C4/S1) and benzene (C8—C13) rings. The O and S atoms are in a syn conformation [S1—C4—C5—O1 = 11.0 (5)°]. The dihedral angle between the thienyl and benzene ring systems is 12.60 (18)°. The five-membered C11/C12/C14/O2/O3 ring is almost planar (r.m.s. deviation = 0.003 Å) and it subtends a dihedral angle of 0.6 (3)° with ring C8–C13, i.e. the rings are statistically co-planar.

In the crystal of the title compound, two weak C—H···O interactions occur (Table 1). The bond involving atom H1 leads to C(12) chains propagating in [001], and that involving atom H14A to zigzag C(11) chains in [010]. Taken together, (100) sheets (Fig. 2) arise, in which unusual R44(31) loops are apparent.

Experimental

To 1-(3-Bromo-2-thienyl)ethanone (2.0 g, 0.01 mol) and 1,3-benzodioxole-5-carbaldehyde (1.5 g, 0.01 mol) in 25 ml of methanol, 5 ml of 10% KOH solution was slowly added with stirring at 278 K, and the stirring was continued for 4 h at RT. The solid separated was filtered out and washed with cold methanol. Recrystallization from methanol yielded the pure compound in 90% yield. Pale yellow bar-like crystals of the title compound were obtained by slow evaporation of a solution in acetone (m.p.: 419–421 K).

Refinement

The H-atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title molecule showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

View approximately down [100] of part of a (100) sheet in the crystal structure of the title compound, with C—H···O interactions indicated by double-dashed lines [Symmetry codes: (i) x, y, z + 1; (ii) 1–x, y–1/2, 1–z].

Crystal data

C14H9BrO3S F(000) = 336
Mr = 337.18 Dx = 1.737 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2038 reflections
a = 4.0013 (3) Å θ = 2.3–26.0°
b = 11.0211 (9) Å µ = 3.35 mm1
c = 14.6931 (11) Å T = 291 K
β = 95.781 (2)° Bar, pale yellow
V = 644.65 (9) Å3 0.48 × 0.16 × 0.09 mm
Z = 2

Data collection

Bruker SMART1000 CCD diffractometer 2684 independent reflections
Radiation source: fine-focus sealed tube 2180 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −5→5
Tmin = 0.296, Tmax = 0.753 k = −14→13
4452 measured reflections l = −14→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0549P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
2684 reflections Δρmax = 0.48 e Å3
172 parameters Δρmin = −0.43 e Å3
1 restraint Absolute structure: Flack (1983), 1127 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.057 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2722 (13) 0.4301 (5) 1.0496 (3) 0.0542 (12)
H1 0.2566 0.4347 1.1122 0.065*
C2 0.1769 (12) 0.3322 (4) 0.9984 (3) 0.0454 (10)
H2 0.0956 0.2606 1.0216 0.054*
C3 0.2158 (10) 0.3519 (4) 0.9061 (3) 0.0382 (9)
C4 0.3482 (10) 0.4619 (4) 0.8875 (3) 0.0372 (9)
C5 0.4449 (11) 0.5265 (4) 0.8055 (3) 0.0417 (9)
C6 0.3357 (11) 0.4825 (4) 0.7134 (3) 0.0448 (10)
H6 0.2024 0.4134 0.7060 0.054*
C7 0.4251 (10) 0.5406 (4) 0.6393 (3) 0.0420 (9)
H7 0.5671 0.6067 0.6512 0.050*
C8 0.3315 (10) 0.5148 (4) 0.5429 (3) 0.0375 (9)
C9 0.4268 (11) 0.5987 (4) 0.4795 (3) 0.0451 (10)
H9 0.5445 0.6676 0.5007 0.054*
C10 0.3519 (12) 0.5833 (4) 0.3846 (3) 0.0472 (11)
H10 0.4155 0.6394 0.3424 0.057*
C11 0.1795 (11) 0.4802 (4) 0.3591 (3) 0.0419 (10)
C12 0.0810 (11) 0.3961 (4) 0.4208 (3) 0.0409 (9)
C13 0.1519 (11) 0.4098 (4) 0.5127 (3) 0.0426 (10)
H13 0.0850 0.3526 0.5538 0.051*
C14 −0.0909 (13) 0.3301 (5) 0.2780 (3) 0.0560 (12)
H14A 0.0216 0.2669 0.2467 0.067*
H14B −0.3212 0.3360 0.2506 0.067*
O1 0.6119 (9) 0.6200 (3) 0.8178 (2) 0.0626 (10)
O2 0.0773 (10) 0.4431 (3) 0.2707 (2) 0.0610 (9)
O3 −0.0837 (11) 0.3020 (3) 0.3741 (2) 0.0673 (10)
S1 0.4233 (3) 0.54359 (10) 0.98785 (7) 0.0466 (3)
Br1 0.10081 (12) 0.22426 (4) 0.82175 (3) 0.05698 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.075 (3) 0.052 (3) 0.036 (2) 0.008 (2) 0.010 (2) 0.003 (2)
C2 0.053 (3) 0.038 (2) 0.046 (2) 0.001 (2) 0.013 (2) 0.0039 (18)
C3 0.039 (2) 0.034 (2) 0.041 (2) 0.0020 (17) 0.0000 (17) 0.0001 (17)
C4 0.037 (2) 0.034 (2) 0.039 (2) 0.0027 (17) −0.0029 (17) 0.0007 (16)
C5 0.044 (2) 0.042 (3) 0.039 (2) 0.0031 (19) 0.0028 (17) 0.0072 (18)
C6 0.051 (2) 0.041 (3) 0.042 (2) −0.002 (2) 0.0050 (18) 0.0025 (19)
C7 0.045 (2) 0.038 (2) 0.044 (2) 0.0024 (19) 0.0048 (18) 0.0061 (19)
C8 0.043 (2) 0.035 (2) 0.035 (2) 0.0075 (17) 0.0028 (17) 0.0020 (16)
C9 0.054 (3) 0.036 (2) 0.046 (2) −0.0042 (19) 0.006 (2) 0.0061 (18)
C10 0.057 (3) 0.043 (3) 0.043 (2) −0.003 (2) 0.011 (2) 0.0155 (19)
C11 0.045 (2) 0.048 (3) 0.033 (2) 0.008 (2) 0.0071 (17) −0.0012 (18)
C12 0.048 (2) 0.031 (2) 0.045 (2) 0.0013 (18) 0.0104 (18) −0.0029 (17)
C13 0.051 (3) 0.036 (2) 0.043 (2) 0.0033 (19) 0.0157 (19) 0.0091 (18)
C14 0.063 (3) 0.057 (3) 0.048 (3) 0.004 (2) 0.004 (2) −0.010 (2)
O1 0.084 (3) 0.047 (2) 0.055 (2) −0.0276 (18) −0.0008 (18) 0.0074 (16)
O2 0.088 (3) 0.058 (2) 0.0364 (17) −0.0052 (19) 0.0062 (16) 0.0002 (15)
O3 0.104 (3) 0.047 (2) 0.051 (2) −0.019 (2) 0.0081 (19) −0.0067 (16)
S1 0.0637 (7) 0.0337 (6) 0.0415 (6) −0.0011 (5) 0.0013 (5) −0.0049 (4)
Br1 0.0737 (3) 0.0409 (2) 0.0554 (3) −0.0142 (3) 0.00161 (19) −0.0071 (3)

Geometric parameters (Å, °)

C1—C2 1.348 (7) C8—C9 1.394 (6)
C1—S1 1.692 (5) C8—C13 1.410 (6)
C1—H1 0.9300 C9—C10 1.406 (6)
C2—C3 1.397 (6) C9—H9 0.9300
C2—H2 0.9300 C10—C11 1.362 (6)
C3—C4 1.362 (6) C10—H10 0.9300
C3—Br1 1.901 (4) C11—C12 1.382 (6)
C4—C5 1.483 (6) C11—O2 1.383 (5)
C4—S1 1.728 (4) C12—C13 1.361 (6)
C5—O1 1.232 (6) C12—O3 1.374 (5)
C5—C6 1.463 (6) C13—H13 0.9300
C6—C7 1.341 (6) C14—O2 1.425 (6)
C6—H6 0.9300 C14—O3 1.442 (6)
C7—C8 1.456 (6) C14—H14A 0.9700
C7—H7 0.9300 C14—H14B 0.9700
C2—C1—S1 112.9 (3) C8—C9—C10 122.5 (4)
C2—C1—H1 123.6 C8—C9—H9 118.7
S1—C1—H1 123.6 C10—C9—H9 118.7
C1—C2—C3 111.3 (4) C11—C10—C9 115.2 (4)
C1—C2—H2 124.3 C11—C10—H10 122.4
C3—C2—H2 124.3 C9—C10—H10 122.4
C4—C3—C2 114.7 (4) C10—C11—C12 123.3 (4)
C4—C3—Br1 127.0 (3) C10—C11—O2 126.8 (4)
C2—C3—Br1 118.3 (3) C12—C11—O2 109.9 (4)
C3—C4—C5 136.8 (4) C13—C12—O3 128.4 (4)
C3—C4—S1 109.3 (3) C13—C12—C11 122.1 (4)
C5—C4—S1 113.9 (3) O3—C12—C11 109.5 (4)
O1—C5—C6 121.3 (4) C12—C13—C8 116.9 (4)
O1—C5—C4 117.7 (4) C12—C13—H13 121.5
C6—C5—C4 121.0 (4) C8—C13—H13 121.5
C7—C6—C5 120.9 (4) O2—C14—O3 107.4 (4)
C7—C6—H6 119.5 O2—C14—H14A 110.2
C5—C6—H6 119.5 O3—C14—H14A 110.2
C6—C7—C8 129.2 (4) O2—C14—H14B 110.2
C6—C7—H7 115.4 O3—C14—H14B 110.2
C8—C7—H7 115.4 H14A—C14—H14B 108.5
C9—C8—C13 119.9 (4) C11—O2—C14 106.6 (3)
C9—C8—C7 117.4 (4) C12—O3—C14 106.7 (4)
C13—C8—C7 122.6 (4) C1—S1—C4 91.8 (2)
S1—C1—C2—C3 −2.3 (5) C9—C10—C11—C12 0.4 (7)
C1—C2—C3—C4 1.8 (6) C9—C10—C11—O2 −179.5 (4)
C1—C2—C3—Br1 179.3 (3) C10—C11—C12—C13 −0.4 (7)
C2—C3—C4—C5 178.6 (4) O2—C11—C12—C13 179.5 (4)
Br1—C3—C4—C5 1.4 (7) C10—C11—C12—O3 −179.3 (4)
C2—C3—C4—S1 −0.5 (5) O2—C11—C12—O3 0.6 (5)
Br1—C3—C4—S1 −177.6 (2) O3—C12—C13—C8 178.8 (4)
C3—C4—C5—O1 −168.1 (5) C11—C12—C13—C8 0.1 (6)
S1—C4—C5—O1 11.0 (5) C9—C8—C13—C12 0.2 (6)
C3—C4—C5—C6 13.9 (7) C7—C8—C13—C12 −179.7 (4)
S1—C4—C5—C6 −167.0 (3) C10—C11—O2—C14 179.6 (4)
O1—C5—C6—C7 2.5 (7) C12—C11—O2—C14 −0.3 (5)
C4—C5—C6—C7 −179.6 (4) O3—C14—O2—C11 0.0 (5)
C5—C6—C7—C8 −177.0 (4) C13—C12—O3—C14 −179.4 (4)
C6—C7—C8—C9 172.3 (5) C11—C12—O3—C14 −0.6 (5)
C6—C7—C8—C13 −7.8 (7) O2—C14—O3—C12 0.4 (5)
C13—C8—C9—C10 −0.2 (7) C2—C1—S1—C4 1.8 (4)
C7—C8—C9—C10 179.7 (4) C3—C4—S1—C1 −0.7 (3)
C8—C9—C10—C11 −0.1 (7) C5—C4—S1—C1 180.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O2i 0.93 2.51 3.420 (6) 167
C14—H14A···O1ii 0.97 2.44 3.400 (6) 171

Symmetry codes: (i) x, y, z+1; (ii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2204).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1430–o1431.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Harrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4183.
  7. Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164–o4165.
  8. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2006c). Acta Cryst. E62, o5010–o5012.
  11. Yathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. & Bolte, M. (2006a). Acta Cryst. E62, o3964–o3965.
  12. Yathirajan, H., Sarojini, B., Narayana, B., Bindya, S. & Bolte, M. (2006b). Acta Cryst. E62, o4048–o4049.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035129/su2204sup1.cif

e-66-o2477-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035129/su2204Isup2.hkl

e-66-o2477-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES