Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 18;66(Pt 10):m1271. doi: 10.1107/S1600536810034860

Di-μ-azido-bis­({N′-[1-(2-pyrid­yl-κN)ethyl­idene]acetohydrazidato-κ2 N′,O}dicopper(II))

Amitabha Datta a, Kuheli Das a, Yan-Ming Jhou a, Jui-Hsien Huang a, Hon Man Lee a,*
PMCID: PMC2983124  PMID: 21587416

Abstract

The dimeric title compound, [Cu2(C9H10N3O)2(N3)2], is located on a crystallographic inversion center. The Cu atom is coordinated by a tridentate anionic hydrazone ligand and two bridging azide ligands in a distorted square-pyramidal coordination geometry. The non-bonding Cu⋯Cu distance is 3.238 (1) Å. Non-classical inter­molecular C—H⋯N hydrogen bonds link the dimers into chains along the c axis.

Related literature

For related dimeric copper(II) complexes with similar tridentate ligands, see: Recio Despaigne et al. (2009); Sen et al. (2007); Patole et al. (2003).graphic file with name e-66-m1271-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C9H10N3O)2(N3)2]

  • M r = 563.54

  • Triclinic, Inline graphic

  • a = 7.589 (3) Å

  • b = 8.955 (3) Å

  • c = 9.693 (4) Å

  • α = 66.534 (15)°

  • β = 69.461 (13)°

  • γ = 81.468 (16)°

  • V = 565.8 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.645, T max = 0.700

  • 3858 measured reflections

  • 2358 independent reflections

  • 1591 reflections with I > 2σ

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.093

  • S = 1.08

  • 2358 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 2.08 e Å−3

  • Δρmin = −2.81 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034860/pv2324sup1.cif

e-66-m1271-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034860/pv2324Isup2.hkl

e-66-m1271-Isup2.hkl (115.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N3i 0.98 2.74 3.710 (4) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the National Science Council of Taiwan for financial support of this work.

supplementary crystallographic information

Comment

The title compound is a dimeric copper(II) complex. Each copper atom is coordinated by a tridentate, anionic hydrazone ligand and two bridging azide ligands. The non-bonding Cu···Cu distance is 3.238 (1) Å, which is slightly longer than that in a related dicopper azido complex (Sen et al.., 2007).

The dimer is located on a crystallographic inversion center. The non-classical intermolecular hydrogen bonds of the type C—H···N link the dimeric compounds into one dimensional chains along the c axis.

Dimeric copper(II) complexes with similar tridentate ligands have been reported in the literature (Recio Despaigne et al., 2009; Sen et al. 2007; Patole et al. 2003).

Experimental

The tridentate ligand precursor, 2-benzoylpyridine-methyl hydrazone, was prepared according to the literature procedure (Recio Despaigne et al., 2009). To the tridentate ligand precursor (1.0 mmol), methanolic solution (20 ml) of copper nitrate trihydrate (0.241 g, 1.0 mmol), was added, followed by the addition, with constant stirring of a solution of sodium azide (0.065 g, 1.0 mmol) in minimum volume of water/methanol mixture. The final solution was kept at room temperature yielding brown square-shaped crystals suitable for X-ray diffraction after few days. Crystals were isolated by filtration and were air-dried.

Refinement

All the hydrogen atoms were located in the difference Fourier map, nevertheless, all the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl—H = 0.98 Å while Uiso(H) = 1.2Ueq(Caryl) and 1.5Ueq(Cmethyl) H atoms. Although the residual electron in the final difference map is high, the refinement model appears to be reliable since the largest peak and hole are located near the heavy Cu atom at distances of 0.70 and 0.03 Å, respectively.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The unlabelled atoms are related to the labelled ones by symmetry operation: 1 - x, 2 - y, 2 - z.

Fig. 2.

Fig. 2.

A view of the crystal packing along the b axis. Hydrogen bonds are shown as dashed lines and H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

[Cu2(C9H10N3O)2(N3)2] Z = 1
Mr = 563.54 F(000) = 286
Triclinic, P1 Dx = 1.654 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.589 (3) Å Cell parameters from 3185 reflections
b = 8.955 (3) Å θ = 2.9–28.5°
c = 9.693 (4) Å µ = 1.92 mm1
α = 66.534 (15)° T = 150 K
β = 69.461 (13)° Prism, brown
γ = 81.468 (16)° 0.25 × 0.20 × 0.20 mm
V = 565.8 (4) Å3

Data collection

Bruker SMART APEXII diffractometer 2358 independent reflections
Radiation source: fine-focus sealed tube 1591 reflections with I > 2σ
graphite Rint = 0.040
ω scans θmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.645, Tmax = 0.700 k = −11→10
3858 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: difference Fourier map
wR(F2) = 0.093 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0597P)2] where P = (Fo2 + 2Fc2)/3
2358 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 2.08 e Å3
0 restraints Δρmin = −2.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.34274 (3) 0.93665 (3) 0.95880 (3) 0.02989 (14)
N5 0.2011 (2) 0.7390 (2) 1.0402 (2) 0.0307 (5)
O1 0.4938 (2) 0.8357 (2) 0.8052 (2) 0.0380 (5)
N1 0.4648 (3) 1.1498 (2) 0.8642 (2) 0.0329 (5)
N6 0.2719 (3) 0.6294 (3) 0.9663 (2) 0.0367 (6)
C8 0.4270 (3) 0.6937 (3) 0.8443 (3) 0.0314 (6)
N2 0.5605 (3) 1.2073 (2) 0.7250 (2) 0.0358 (6)
N4 0.1206 (2) 0.9791 (2) 1.1350 (2) 0.0315 (5)
C1 −0.0012 (3) 0.8504 (3) 1.2187 (3) 0.0341 (6)
C2 −0.1553 (3) 0.8504 (4) 1.3488 (3) 0.0438 (8)
H2 −0.2404 0.7619 1.4036 0.053*
C9 0.5264 (3) 0.5944 (3) 0.7465 (3) 0.0436 (7)
H9A 0.4938 0.6357 0.6483 0.065*
H9B 0.4881 0.4806 0.8067 0.065*
H9C 0.6627 0.6019 0.7202 0.065*
C5 0.0911 (3) 1.1048 (3) 1.1831 (3) 0.0390 (7)
H5 0.1758 1.1935 1.1254 0.047*
C6 0.0467 (3) 0.7153 (3) 1.1593 (3) 0.0351 (7)
C3 −0.1850 (3) 0.9815 (4) 1.3992 (3) 0.0470 (9)
H3 −0.2888 0.9825 1.4891 0.056*
C4 −0.0596 (4) 1.1095 (4) 1.3148 (3) 0.0449 (7)
H4 −0.0761 1.1997 1.3465 0.054*
N3 0.6520 (4) 1.2683 (4) 0.5959 (3) 0.0644 (10)
C7 −0.0748 (4) 0.5681 (4) 1.2321 (4) 0.0564 (10)
H7A −0.0411 0.5099 1.1594 0.085*
H7B −0.2073 0.6022 1.2516 0.085*
H7C −0.0556 0.4962 1.3328 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03078 (16) 0.0297 (2) 0.02843 (18) −0.00779 (10) −0.00486 (12) −0.01154 (14)
N5 0.0319 (7) 0.0317 (10) 0.0289 (9) −0.0042 (7) −0.0062 (7) −0.0133 (8)
O1 0.0400 (8) 0.0382 (10) 0.0350 (9) −0.0100 (6) −0.0044 (7) −0.0163 (8)
N1 0.0386 (8) 0.0306 (10) 0.0287 (9) −0.0063 (7) −0.0068 (8) −0.0117 (9)
N6 0.0383 (9) 0.0368 (11) 0.0351 (10) −0.0048 (8) −0.0079 (9) −0.0154 (9)
C8 0.0389 (9) 0.0296 (11) 0.0318 (10) −0.0017 (8) −0.0140 (9) −0.0148 (9)
N2 0.0404 (9) 0.0327 (10) 0.0316 (10) −0.0034 (7) −0.0105 (8) −0.0091 (9)
N4 0.0303 (7) 0.0331 (10) 0.0310 (9) −0.0027 (6) −0.0079 (7) −0.0126 (8)
C1 0.0286 (8) 0.0403 (12) 0.0295 (11) −0.0040 (7) −0.0073 (8) −0.0098 (10)
C2 0.0346 (10) 0.0535 (16) 0.0353 (12) −0.0070 (9) −0.0012 (9) −0.0150 (13)
C9 0.0495 (12) 0.0421 (15) 0.0402 (13) −0.0022 (10) −0.0097 (11) −0.0200 (12)
C5 0.0395 (10) 0.0399 (14) 0.0386 (12) −0.0032 (9) −0.0109 (10) −0.0162 (12)
C6 0.0323 (9) 0.0352 (12) 0.0343 (11) −0.0074 (8) −0.0070 (9) −0.0102 (10)
C3 0.0388 (10) 0.0623 (19) 0.0358 (13) 0.0030 (10) −0.0028 (10) −0.0234 (14)
C4 0.0484 (12) 0.0489 (16) 0.0437 (14) 0.0071 (10) −0.0130 (11) −0.0277 (12)
N3 0.0746 (16) 0.0654 (19) 0.0323 (12) −0.0125 (13) −0.0042 (12) −0.0045 (14)
C7 0.0493 (13) 0.0495 (18) 0.0599 (19) −0.0198 (12) 0.0053 (13) −0.0229 (16)

Geometric parameters (Å, °)

Cu1—N5 1.941 (2) C1—C6 1.484 (4)
Cu1—N1 1.969 (2) C2—C3 1.403 (5)
Cu1—O1 1.979 (2) C2—H2 0.9500
Cu1—N4 2.051 (2) C9—H9A 0.9800
Cu1—N1i 2.4574 (18) C9—H9B 0.9800
N5—C6 1.297 (3) C9—H9C 0.9800
N5—N6 1.377 (4) C5—C4 1.394 (4)
O1—C8 1.300 (3) C5—H5 0.9500
N1—N2 1.218 (3) C6—C7 1.500 (3)
N1—Cu1i 2.4574 (18) C3—C4 1.386 (4)
N6—C8 1.341 (3) C3—H3 0.9500
C8—C9 1.493 (5) C4—H4 0.9500
N2—N3 1.142 (3) C7—H7A 0.9800
N4—C5 1.343 (4) C7—H7B 0.9800
N4—C1 1.374 (3) C7—H7C 0.9800
C1—C2 1.387 (4)
N5—Cu1—N1 173.44 (6) C1—C2—C3 119.8 (2)
N5—Cu1—O1 79.78 (9) C1—C2—H2 120.1
N1—Cu1—O1 101.14 (9) C3—C2—H2 120.1
N5—Cu1—N4 80.27 (9) C8—C9—H9A 109.5
N1—Cu1—N4 98.12 (10) C8—C9—H9B 109.5
O1—Cu1—N4 159.42 (8) H9A—C9—H9B 109.5
N5—Cu1—N1i 99.67 (7) C8—C9—H9C 109.5
N1—Cu1—N1i 86.64 (6) H9A—C9—H9C 109.5
O1—Cu1—N1i 98.75 (8) H9B—C9—H9C 109.5
N4—Cu1—N1i 89.51 (8) N4—C5—C4 122.3 (2)
C6—N5—N6 123.0 (2) N4—C5—H5 118.9
C6—N5—Cu1 119.7 (2) C4—C5—H5 118.9
N6—N5—Cu1 117.28 (14) N5—C6—C1 113.21 (19)
C8—O1—Cu1 110.27 (16) N5—C6—C7 124.6 (3)
N2—N1—Cu1 122.4 (2) C1—C6—C7 122.2 (3)
N2—N1—Cu1i 111.79 (13) C4—C3—C2 118.5 (3)
Cu1—N1—Cu1i 93.36 (6) C4—C3—H3 120.7
C8—N6—N5 107.9 (2) C2—C3—H3 120.7
O1—C8—N6 124.6 (3) C3—C4—C5 119.4 (3)
O1—C8—C9 118.6 (2) C3—C4—H4 120.3
N6—C8—C9 116.8 (2) C5—C4—H4 120.3
N3—N2—N1 176.3 (3) C6—C7—H7A 109.5
C5—N4—C1 119.0 (2) C6—C7—H7B 109.5
C5—N4—Cu1 128.98 (15) H7A—C7—H7B 109.5
C1—N4—Cu1 111.8 (2) C6—C7—H7C 109.5
N4—C1—C2 121.1 (3) H7A—C7—H7C 109.5
N4—C1—C6 114.9 (2) H7B—C7—H7C 109.5
C2—C1—C6 124.0 (2)

Symmetry codes: (i) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···N3ii 0.98 2.74 3.710 (4) 171

Symmetry codes: (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2324).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett.13, 51–55. [DOI] [PubMed]
  4. Recio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct.920, 97–102.
  5. Sen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007). Polyhedron, 26, 1740–1744.
  6. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034860/pv2324sup1.cif

e-66-m1271-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034860/pv2324Isup2.hkl

e-66-m1271-Isup2.hkl (115.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES