Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(21):8516–8520. doi: 10.1073/pnas.86.21.8516

Inhibition of allorecognition by an H-2Kb-derived peptide is evidence for a T-cell binding region on a major histocompatibility complex molecule.

J Schneck 1, T Munitz 1, J E Coligan 1, W L Maloy 1, D H Margulies 1, A Singer 1
PMCID: PMC298313  PMID: 2813409

Abstract

The class I and class II major histocompatibility complex (MHC) antigens are polymorphic cell-surface glycoproteins that present antigenic peptides to T lymphocytes in the generation of immune responses. While much is known about the recognition and processing of antigens, the nature of T-cell recognition sites on MHC molecules is poorly understood. Both structural and functional studies have suggested that the two major alpha-helical regions of the class I MHC molecule not only define the site for binding of antigenic peptide but also provide potential sites for interaction of the MHC molecule with the T-cell receptor. A peptide derived from one of these regions on the H-2Kb molecule, peptide Kb163-174, was previously shown to specifically inhibit the stimulation of an alloreactive T-cell hybridoma. To further investigate the role of this region in the recognition of H-2Kb, the effects of peptide Kb163-174 on allospecific T-cell lines and clones were studied. When peptide Kb163-174 was cocultured with either an H-2Kbm10 anti-H-2Kb cytotoxic T-lymphocyte (CTL) clone or a CTL line, this peptide inhibited lysis of H-2Kb targets. Pretreatment experiments showed that the blockade was due to interaction of the peptide with the effector T cells. Surprisingly, peptide Kb163-174 also inhibited lysis of H-2Kb targets by H-2Kbm1-, H-2Kbm3-, H-2Kbm6, and H-2Kbm8-anti-H-2Kb CTLs. These CTLs, which identify multiple antigenic sites on H-2Kb in the alpha 1 and alpha 2 domains, are not directed against amino acid residues 163-174 of H-2Kb. In addition, peptide Kb163-174 specifically blocked lysis of only H-2Kb and not H-2Ld targets by a single bulk CTL culture that was alloreactive on both H-2Kb and H-2Ld. These results indicate that peptide Kb163-174 interferes with T-cell receptor engagement of a contact site on the H-2Kb molecule. Thus, amino acid residues 163-174 define a site used by many alloreactive T cells to engage the H-2Kb molecule.

Full text

PDF
8516

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajitkumar P., Geier S. S., Kesari K. V., Borriello F., Nakagawa M., Bluestone J. A., Saper M. A., Wiley D. C., Nathenson S. G. Evidence that multiple residues on both the alpha-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. Cell. 1988 Jul 1;54(1):47–56. doi: 10.1016/0092-8674(88)90178-x. [DOI] [PubMed] [Google Scholar]
  2. Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  5. Bluestone J. A., Langlet C., Geier S. S., Nathenson S. G., Foo M., Schmitt-Verhulst A. M. Somatic cell variants express altered H-2Kb allodeterminants recognized by cytolytic T cell clones. J Immunol. 1986 Aug 15;137(4):1244–1250. [PubMed] [Google Scholar]
  6. Braciale T. J., Braciale V. L., Winkler M., Stroynowski I., Hood L., Sambrook J., Gething M. J. On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolytic T lymphocytes. J Exp Med. 1987 Sep 1;166(3):678–692. doi: 10.1084/jem.166.3.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brunner K. T., Mauel J., Cerottini J. C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968 Feb;14(2):181–196. [PMC free article] [PubMed] [Google Scholar]
  8. Buus S., Sette A., Colon S. M., Jenis D. M., Grey H. M. Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell. 1986 Dec 26;47(6):1071–1077. doi: 10.1016/0092-8674(86)90822-6. [DOI] [PubMed] [Google Scholar]
  9. Buus S., Sette A., Colon S. M., Miles C., Grey H. M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science. 1987 Mar 13;235(4794):1353–1358. doi: 10.1126/science.2435001. [DOI] [PubMed] [Google Scholar]
  10. Chen B. P., Parham P. Direct binding of influenza peptides to class I HLA molecules. Nature. 1989 Feb 23;337(6209):743–745. doi: 10.1038/337743a0. [DOI] [PubMed] [Google Scholar]
  11. Clayberger C., Parham P., Rothbard J., Ludwig D. S., Schoolnik G. K., Krensky A. M. HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes. Nature. 1987 Dec 24;330(6150):763–765. doi: 10.1038/330763a0. [DOI] [PubMed] [Google Scholar]
  12. Corradin G., Chiller J. M. Lymphocyte specificity to protein antigens. II. Fine specificity of T-cell activation with cytochrome c and derived peptides as antigenic probes. J Exp Med. 1979 Feb 1;149(2):436–447. doi: 10.1084/jem.149.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans G. A., Margulies D. H., Shykind B., Seidman J. G., Ozato K. Exon shuffling: mapping polymorphic determinants on hybrid mouse transplantation antigens. Nature. 1982 Dec 23;300(5894):755–757. doi: 10.1038/300755a0. [DOI] [PubMed] [Google Scholar]
  14. Fink P. J., Shimonkevitz R. P., Bevan M. J. Veto cells. Annu Rev Immunol. 1988;6:115–137. doi: 10.1146/annurev.iy.06.040188.000555. [DOI] [PubMed] [Google Scholar]
  15. Geliebter J., Nathenson S. G. Microrecombinations generate sequence diversity in the murine major histocompatibility complex: analysis of the Kbm3, Kbm4, Kbm10, and Kbm11 mutants. Mol Cell Biol. 1988 Oct;8(10):4342–4352. doi: 10.1128/mcb.8.10.4342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guillet J. G., Lai M. Z., Briner T. J., Smith J. A., Gefter M. L. Interaction of peptide antigens and class II major histocompatibility complex antigens. Nature. 1986 Nov 20;324(6094):260–262. doi: 10.1038/324260a0. [DOI] [PubMed] [Google Scholar]
  17. Lewis J., Foo M., Geier S. S., Kumar P. A., Nathenson S. G., Bluestone J. A. Cytotoxic T lymphocyte recognition of novel allodeterminants expressed on in vitro selected H-2Kb mutants. J Immunol. 1988 Aug 1;141(3):728–735. [PubMed] [Google Scholar]
  18. Maloy W. L. Comparison of the primary structure of class I molecules. Immunol Res. 1987;6(1-2):11–29. doi: 10.1007/BF02918101. [DOI] [PubMed] [Google Scholar]
  19. Margulies D. H., Ramsey A. L., Boyd L. F., McCluskey J. Genetic engineering of an H-2Dd/Q10b chimeric histocompatibility antigen: purification of soluble protein from transformant cell supernatants. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5252–5256. doi: 10.1073/pnas.83.14.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marrack P., Kappler J. T cells can distinguish between allogeneic major histocompatibility complex products on different cell types. Nature. 1988 Apr 28;332(6167):840–843. doi: 10.1038/332840a0. [DOI] [PubMed] [Google Scholar]
  21. Maryanski J. L., Pala P., Corradin G., Jordan B. R., Cerottini J. C. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature. 1986 Dec 11;324(6097):578–579. doi: 10.1038/324578a0. [DOI] [PubMed] [Google Scholar]
  22. Matzinger P., Bevan M. J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol. 1977 Mar 1;29(1):1–5. doi: 10.1016/0008-8749(77)90269-6. [DOI] [PubMed] [Google Scholar]
  23. McCluskey J., Boyd L., Foo M., Forman J., Margulies D. H., Bluestone J. A. Analysis of hybrid H-2D and L antigens with reciprocally mismatched aminoterminal domains: functional T cell recognition requires preservation of fine structural determinants. J Immunol. 1986 Dec 15;137(12):3881–3890. [PubMed] [Google Scholar]
  24. Nathenson S. G., Geliebter J., Pfaffenbach G. M., Zeff R. A. Murine major histocompatibility complex class-I mutants: molecular analysis and structure-function implications. Annu Rev Immunol. 1986;4:471–502. doi: 10.1146/annurev.iy.04.040186.002351. [DOI] [PubMed] [Google Scholar]
  25. Parham P., Clayberger C., Zorn S. L., Ludwig D. S., Schoolnik G. K., Krensky A. M. Inhibition of alloreactive cytotoxic T lymphocytes by peptides from the alpha 2 domain of HLA-A2. Nature. 1987 Feb 12;325(6105):625–628. doi: 10.1038/325625a0. [DOI] [PubMed] [Google Scholar]
  26. Sali D., Bycroft M., Fersht A. R. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature. 1988 Oct 20;335(6192):740–743. doi: 10.1038/335740a0. [DOI] [PubMed] [Google Scholar]
  27. Schneck J., Maloy W. L., Coligan J. E., Margulies D. H. Inhibition of an allospecific T cell hybridoma by soluble class I proteins and peptides: estimation of the affinity of a T cell receptor for MHC. Cell. 1989 Jan 13;56(1):47–55. doi: 10.1016/0092-8674(89)90982-3. [DOI] [PubMed] [Google Scholar]
  28. Schwartz R. H., Berzofsky J. A., Horton C. L., Schechter A. N., Sachs D. H. Genetic control of the T lymphocyte proliferative response to staphylococcal nuclease: evidence for multiple MHC-linked Ir gene control. J Immunol. 1978 May;120(5):1741–1749. [PubMed] [Google Scholar]
  29. Schwartz R. H. Immune response (Ir) genes of the murine major histocompatibility complex. Adv Immunol. 1986;38:31–201. doi: 10.1016/s0065-2776(08)60006-1. [DOI] [PubMed] [Google Scholar]
  30. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  31. Watts S., Vogel J. M., Harriman W. D., Itoh T., Stauss H. J., Goodenow R. S. DNA sequence analysis of the C3H H-2Kk and H-2Dk loci. Evolutionary relationships to H-2 genes from four other mouse strains. J Immunol. 1987 Dec 1;139(11):3878–3885. [PubMed] [Google Scholar]
  32. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES