Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 15;66(Pt 10):o2562. doi: 10.1107/S1600536810036184

N′-(3,5-Dichloro-2-hy­droxy­benzyl­idene)-4-nitro­benzohydrazide methanol solvate

Hai-Yun Zhu a,*
PMCID: PMC2983133  PMID: 21587548

Abstract

In the title compound, C14H9Cl2N3O4·CH4O, the dihedral angle between the two benzene rings in the hydrazone mol­ecule is 6.3 (3)°. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, centrosymmetrically related mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background to hydrazone compounds, see: Rasras et al. (2010); Fan et al. (2010); Ajani et al. (2010); Avaji et al. (2009). For the crystal structures of related hydrazone compounds, see: Khaledi et al. (2010); Han et al. (2010); Hussain et al. (2010); Ji & Lu (2010). For reference bond-length data, see: Allen et al. (1987).graphic file with name e-66-o2562-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl2N3O4·CH4O

  • M r = 386.18

  • Monoclinic, Inline graphic

  • a = 7.415 (3) Å

  • b = 13.408 (3) Å

  • c = 16.674 (2) Å

  • β = 99.716 (3)°

  • V = 1634.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.15 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.938, T max = 0.958

  • 8410 measured reflections

  • 3467 independent reflections

  • 2099 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.124

  • S = 1.02

  • 3467 reflections

  • 232 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036184/rz2485sup1.cif

e-66-o2562-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036184/rz2485Isup2.hkl

e-66-o2562-Isup2.hkl (170.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.633 (3) 145
N2—H2⋯O5 0.90 (1) 1.91 (1) 2.793 (3) 167 (3)
O5—H5⋯O2i 0.82 2.15 2.903 (3) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Science Research Foundation of Baoji University of Arts and Sciences (grant No. ZK085).

supplementary crystallographic information

Comment

In recent years, considerable interest has been focused on the preparation and biological properties of hydrazone compounds (Rasras et al., 2010; Fan et al., 2010; Ajani et al., 2010; Avaji et al., 2009). The crystal structures of a number of hydrazone compounds have been reported (Khaledi et al., 2010; Han et al., 2010; Hussain et al., 2010; Ji & Lu, 2010). The author reports in this paper the title new hydrazone compound.

The asymmetric unit of the title compound (Fig. 1) consists of a hydrazone molecule and a methanol molecule. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 6.3 (3)°. There is an intramolecular O—H···N hydrogen bond (Table 1) stabilizing the conformation of the hydrazone molecule. All bond lengths are within normal values (Allen et al., 1987), and are comparable with those in the similar hydrazone compounds as cited above. In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1).

Experimental

3,5-Dichlorosalicylaldehyde (0.191 g, 1 mmol) and 4-nitrobenzohydrazide (0.181 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear yellow solution was left to slowly evaporate in air for a week, yielding yellow needle crystals of the title compound suitable for X-ray analysis.

Refinement

The H2 atom attached to N2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å, and with Uiso fixed at 0.08 Å2. The remaining H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The molecular packing of the title compound viewed along the c axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.

Crystal data

C14H9Cl2N3O4·CH4O F(000) = 792
Mr = 386.18 Dx = 1.570 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1245 reflections
a = 7.415 (3) Å θ = 2.4–24.5°
b = 13.408 (3) Å µ = 0.43 mm1
c = 16.674 (2) Å T = 298 K
β = 99.716 (3)° Cut from needle, yellow
V = 1634.0 (8) Å3 0.15 × 0.13 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3467 independent reflections
Radiation source: fine-focus sealed tube 2099 reflections with I > 2σ(I)
graphite Rint = 0.046
ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.938, Tmax = 0.958 k = −14→17
8410 measured reflections l = −21→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0676P] where P = (Fo2 + 2Fc2)/3
3467 reflections (Δ/σ)max < 0.001
232 parameters Δρmax = 0.21 e Å3
1 restraint Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.46614 (12) −0.21402 (6) 0.15195 (5) 0.0565 (3)
Cl2 0.37115 (12) 0.17025 (6) 0.06479 (5) 0.0538 (3)
N1 0.2955 (3) −0.01141 (17) 0.40697 (13) 0.0378 (6)
N2 0.2663 (3) 0.02375 (17) 0.48171 (14) 0.0388 (6)
N3 0.0804 (4) 0.1043 (3) 0.84113 (17) 0.0567 (8)
O1 0.3717 (3) −0.14918 (14) 0.30523 (12) 0.0481 (6)
H1 0.3572 −0.1275 0.3497 0.072*
O2 0.2382 (3) −0.13351 (15) 0.52776 (12) 0.0552 (6)
O3 0.0317 (4) 0.1905 (2) 0.84516 (15) 0.0786 (8)
O4 0.1004 (4) 0.0463 (2) 0.89825 (15) 0.0911 (9)
O5 0.4237 (3) 0.21205 (16) 0.51288 (15) 0.0619 (7)
H5 0.5275 0.2100 0.5021 0.093*
C1 0.3366 (4) 0.0260 (2) 0.27209 (16) 0.0329 (6)
C2 0.3712 (4) −0.0733 (2) 0.25280 (16) 0.0356 (7)
C3 0.4095 (4) −0.0933 (2) 0.17535 (16) 0.0349 (7)
C4 0.4077 (4) −0.0197 (2) 0.11735 (17) 0.0410 (7)
H4 0.4311 −0.0353 0.0657 0.049*
C5 0.3705 (4) 0.0773 (2) 0.13695 (16) 0.0370 (7)
C6 0.3342 (4) 0.1002 (2) 0.21322 (16) 0.0363 (7)
H6 0.3079 0.1656 0.2256 0.044*
C7 0.3046 (4) 0.0552 (2) 0.35267 (16) 0.0373 (7)
H7 0.2908 0.1223 0.3647 0.045*
C8 0.2371 (4) −0.0435 (2) 0.53888 (17) 0.0369 (7)
C9 0.1972 (4) −0.0003 (2) 0.61643 (16) 0.0332 (7)
C10 0.1438 (4) 0.0976 (2) 0.62461 (17) 0.0395 (7)
H10 0.1332 0.1406 0.5803 0.047*
C11 0.1061 (4) 0.1320 (2) 0.69819 (18) 0.0440 (8)
H11 0.0710 0.1978 0.7040 0.053*
C12 0.1216 (4) 0.0669 (2) 0.76247 (17) 0.0405 (7)
C13 0.1716 (4) −0.0309 (2) 0.75640 (17) 0.0439 (8)
H13 0.1796 −0.0737 0.8008 0.053*
C14 0.2096 (4) −0.0643 (2) 0.68295 (17) 0.0400 (7)
H14 0.2439 −0.1304 0.6777 0.048*
C15 0.3910 (5) 0.3073 (2) 0.5430 (2) 0.0592 (9)
H15A 0.4591 0.3147 0.5970 0.089*
H15B 0.2628 0.3147 0.5444 0.089*
H15C 0.4288 0.3574 0.5082 0.089*
H2 0.300 (5) 0.0871 (11) 0.494 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0704 (6) 0.0374 (5) 0.0641 (6) 0.0041 (4) 0.0181 (4) −0.0126 (4)
Cl2 0.0633 (6) 0.0514 (5) 0.0479 (5) −0.0048 (4) 0.0127 (4) 0.0148 (4)
N1 0.0435 (15) 0.0393 (14) 0.0321 (13) −0.0018 (12) 0.0109 (11) −0.0040 (11)
N2 0.0501 (16) 0.0345 (14) 0.0334 (13) −0.0035 (13) 0.0120 (11) −0.0031 (11)
N3 0.0562 (19) 0.072 (2) 0.0457 (18) −0.0123 (17) 0.0203 (14) −0.0134 (16)
O1 0.0704 (16) 0.0325 (12) 0.0429 (12) −0.0015 (11) 0.0138 (12) 0.0040 (9)
O2 0.0864 (18) 0.0301 (12) 0.0527 (14) −0.0008 (12) 0.0223 (12) −0.0067 (10)
O3 0.098 (2) 0.076 (2) 0.0684 (18) 0.0053 (17) 0.0328 (15) −0.0264 (15)
O4 0.143 (3) 0.093 (2) 0.0445 (15) −0.0060 (19) 0.0359 (16) −0.0005 (15)
O5 0.0673 (17) 0.0488 (14) 0.0767 (17) −0.0132 (12) 0.0326 (14) −0.0180 (12)
C1 0.0328 (16) 0.0336 (16) 0.0335 (15) −0.0002 (13) 0.0089 (12) −0.0015 (12)
C2 0.0350 (17) 0.0346 (17) 0.0375 (16) −0.0021 (13) 0.0065 (13) 0.0027 (13)
C3 0.0342 (17) 0.0311 (16) 0.0406 (16) 0.0007 (13) 0.0094 (13) −0.0066 (13)
C4 0.0444 (19) 0.0441 (18) 0.0354 (16) −0.0056 (15) 0.0095 (13) −0.0027 (14)
C5 0.0375 (17) 0.0383 (17) 0.0357 (16) −0.0036 (14) 0.0081 (13) 0.0039 (13)
C6 0.0371 (17) 0.0290 (15) 0.0423 (17) 0.0011 (13) 0.0056 (13) 0.0008 (13)
C7 0.0401 (18) 0.0323 (16) 0.0406 (16) 0.0026 (14) 0.0099 (13) −0.0024 (13)
C8 0.0384 (18) 0.0350 (17) 0.0378 (16) −0.0028 (14) 0.0078 (13) −0.0025 (14)
C9 0.0307 (16) 0.0351 (16) 0.0344 (15) −0.0016 (13) 0.0075 (12) −0.0028 (13)
C10 0.0459 (19) 0.0368 (17) 0.0387 (17) 0.0034 (14) 0.0157 (14) 0.0019 (13)
C11 0.048 (2) 0.0404 (18) 0.0461 (18) 0.0010 (15) 0.0150 (15) −0.0044 (15)
C12 0.0340 (17) 0.054 (2) 0.0356 (16) −0.0081 (15) 0.0132 (13) −0.0094 (15)
C13 0.048 (2) 0.047 (2) 0.0368 (17) −0.0054 (16) 0.0068 (14) 0.0039 (14)
C14 0.0417 (18) 0.0332 (17) 0.0458 (18) −0.0059 (14) 0.0094 (14) −0.0009 (14)
C15 0.058 (2) 0.047 (2) 0.074 (2) 0.0044 (17) 0.0156 (18) −0.0058 (18)

Geometric parameters (Å, °)

Cl1—C3 1.733 (3) C4—C5 1.380 (4)
Cl2—C5 1.733 (3) C4—H4 0.9300
N1—C7 1.282 (3) C5—C6 1.378 (4)
N1—N2 1.383 (3) C6—H6 0.9300
N2—C8 1.356 (4) C7—H7 0.9300
N2—H2 0.898 (10) C8—C9 1.492 (4)
N3—O3 1.217 (4) C9—C10 1.385 (4)
N3—O4 1.219 (3) C9—C14 1.393 (4)
N3—C12 1.483 (4) C10—C11 1.383 (4)
O1—C2 1.341 (3) C10—H10 0.9300
O1—H1 0.8200 C11—C12 1.372 (4)
O2—C8 1.221 (3) C11—H11 0.9300
O5—C15 1.409 (3) C12—C13 1.371 (4)
O5—H5 0.8200 C13—C14 1.377 (4)
C1—C6 1.396 (4) C13—H13 0.9300
C1—C2 1.403 (4) C14—H14 0.9300
C1—C7 1.457 (4) C15—H15A 0.9600
C2—C3 1.394 (4) C15—H15B 0.9600
C3—C4 1.380 (4) C15—H15C 0.9600
C7—N1—N2 115.7 (2) C1—C7—H7 120.0
C8—N2—N1 118.3 (2) O2—C8—N2 123.0 (3)
C8—N2—H2 123 (2) O2—C8—C9 121.5 (3)
N1—N2—H2 116 (2) N2—C8—C9 115.4 (2)
O3—N3—O4 124.2 (3) C10—C9—C14 119.1 (3)
O3—N3—C12 118.5 (3) C10—C9—C8 123.7 (3)
O4—N3—C12 117.3 (3) C14—C9—C8 117.1 (3)
C2—O1—H1 109.5 C11—C10—C9 120.5 (3)
C15—O5—H5 109.5 C11—C10—H10 119.8
C6—C1—C2 119.7 (2) C9—C10—H10 119.8
C6—C1—C7 118.2 (3) C12—C11—C10 118.6 (3)
C2—C1—C7 122.1 (3) C12—C11—H11 120.7
O1—C2—C3 118.6 (3) C10—C11—H11 120.7
O1—C2—C1 123.4 (3) C13—C12—C11 122.6 (3)
C3—C2—C1 118.0 (2) C13—C12—N3 119.2 (3)
C4—C3—C2 122.1 (3) C11—C12—N3 118.2 (3)
C4—C3—Cl1 119.0 (2) C12—C13—C14 118.4 (3)
C2—C3—Cl1 118.9 (2) C12—C13—H13 120.8
C5—C4—C3 119.1 (3) C14—C13—H13 120.8
C5—C4—H4 120.4 C13—C14—C9 120.8 (3)
C3—C4—H4 120.4 C13—C14—H14 119.6
C6—C5—C4 120.4 (3) C9—C14—H14 119.6
C6—C5—Cl2 120.3 (2) O5—C15—H15A 109.5
C4—C5—Cl2 119.3 (2) O5—C15—H15B 109.5
C5—C6—C1 120.6 (3) H15A—C15—H15B 109.5
C5—C6—H6 119.7 O5—C15—H15C 109.5
C1—C6—H6 119.7 H15A—C15—H15C 109.5
N1—C7—C1 120.0 (3) H15B—C15—H15C 109.5
N1—C7—H7 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.92 2.633 (3) 145
N2—H2···O5 0.90 (1) 1.91 (1) 2.793 (3) 167 (3)
O5—H5···O2i 0.82 2.15 2.903 (3) 153

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2485).

References

  1. Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem.18, 214–221. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem.44, 3552–3559. [DOI] [PubMed]
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Fan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem.45, 1438–1446. [DOI] [PubMed]
  7. Han, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085–o1086. [DOI] [PMC free article] [PubMed]
  8. Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888. [DOI] [PMC free article] [PubMed]
  9. Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514. [DOI] [PMC free article] [PubMed]
  10. Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106. [DOI] [PMC free article] [PubMed]
  11. Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem.45, 2307–2313. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036184/rz2485sup1.cif

e-66-o2562-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036184/rz2485Isup2.hkl

e-66-o2562-Isup2.hkl (170.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES