Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):o2542. doi: 10.1107/S1600536810035166

2,4-Dichloro-N-(2-methyl­phen­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2983146  PMID: 21587532

Abstract

In the title compound, C13H11Cl2NO2S, the methyl-substituted aromatic ring is disordered over two positions [occupancy ratio 0.705 (5):0.295 (5)]. The dihedral angles between the two aromatic rings are 74.9 (1) and 71.0 (3)° in the two disorder components. The crystal structure features centrosymmetric dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008, 2010a,b ); For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-66-o2542-scheme1.jpg

Experimental

Crystal data

  • C13H11Cl2NO2S

  • M r = 316.19

  • Monoclinic, Inline graphic

  • a = 8.106 (1) Å

  • b = 14.854 (2) Å

  • c = 11.772 (1) Å

  • β = 97.34 (1)°

  • V = 1405.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.52 mm−1

  • T = 299 K

  • 0.35 × 0.25 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (North et al., 1968) T min = 0.248, T max = 0.339

  • 5256 measured reflections

  • 2501 independent reflections

  • 2205 reflections with I > 2σ(I)

  • R int = 0.033

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.098

  • S = 1.04

  • 2501 reflections

  • 240 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035166/bt5340sup1.cif

e-66-o2542-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035166/bt5340Isup2.hkl

e-66-o2542-Isup2.hkl (122.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.13 (2) 2.936 (2) 159 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; Gowda et al. 2010a,b), the structure of 2,4-dichloro-N-(2-methylphenyl)-benzenesulfonamide (I) has been determined (Fig. 1). The methylsubstituted anilino ring is disordered. The conformations of the N—C bonds in the C—SO2—NH—C segment have gauche torsions with respect to the S═O bonds in one of the disordered components.

The molecule is twisted at the S atom with the C1—SO2—NH—C7 torsion angles of -85.1 (3)° and -47.2 (5)° in the major and minor components, respectively, compared to the values of 55.1 (3)° (molecule 1) and -48.3 (3)° (molecule 2) in 2,4-dichloro-N-(phenyl)-benzenesulfonamide (II) (Gowda et al., 2010b), -60.2 (2)° in 2,4-dichloro-N- (3-methylphenyl)benzenesulfonamide (III)(Gowda et al., 2010a) and 72.0 (2)° in N-(2-methylphenyl)-benzenesulfonamide (IV) (Gowda et al., 2008).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 74.9 (1)° and 71.0 (3)° in the two components, compared to the values of 80.5 (2)° in molecule 1 and 64.9 (1)° in molecule 2 of (II), 68.6 (1)° in (III) and 61.5 (1)° in (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into infinite chains running parallel to the c-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N-(2-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its coordinates were refined with the N—H distance restrained to 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Atoms C7–C12 of the phenyl ring and C13 of the methyl group are disordered and were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.705 (5) and 0.295 (5)]. The corresponding bond distances in the disordered groups were restrained to be equal.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. Only the major occupied component is shown.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H11Cl2NO2S F(000) = 648
Mr = 316.19 Dx = 1.494 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.106 (1) Å θ = 4.6–16.5°
b = 14.854 (2) Å µ = 5.52 mm1
c = 11.772 (1) Å T = 299 K
β = 97.34 (1)° Prism, colourless
V = 1405.8 (3) Å3 0.35 × 0.25 × 0.25 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2205 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 67.0°, θmin = 4.8°
ω/2θ scans h = 0→9
Absorption correction: multi-scan (North et al., 1968) k = −17→17
Tmin = 0.248, Tmax = 0.339 l = −14→13
5256 measured reflections 3 standard reflections every 120 min
2501 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.4627P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.005
2501 reflections Δρmax = 0.44 e Å3
240 parameters Δρmin = −0.38 e Å3
8 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0021 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.1368 (2) 0.33703 (12) 0.20574 (15) 0.0386 (4)
C2 0.2961 (3) 0.36013 (12) 0.18389 (16) 0.0404 (4)
C3 0.4340 (3) 0.31932 (15) 0.24250 (19) 0.0502 (5)
H3 0.5403 0.3342 0.2269 0.060*
C4 0.4113 (3) 0.25585 (15) 0.3250 (2) 0.0533 (5)
C5 0.2555 (3) 0.23232 (14) 0.34875 (19) 0.0520 (5)
H5 0.2430 0.1899 0.4051 0.062*
C6 0.1183 (3) 0.27211 (13) 0.28857 (17) 0.0450 (5)
H6 0.0124 0.2556 0.3032 0.054*
C7A −0.1071 (5) 0.5236 (2) 0.2565 (3) 0.0446 (8) 0.705 (5)
C8A 0.0002 (5) 0.5685 (2) 0.3379 (4) 0.0532 (9) 0.705 (5)
C9A −0.072 (2) 0.6089 (7) 0.4284 (7) 0.071 (3) 0.705 (5)
H9A −0.0061 0.6448 0.4807 0.085* 0.705 (5)
C10A −0.2337 (8) 0.5970 (3) 0.4412 (4) 0.0903 (16) 0.705 (5)
H10A −0.2750 0.6187 0.5061 0.108* 0.705 (5)
C11A −0.3369 (8) 0.5525 (4) 0.3577 (6) 0.0851 (17) 0.705 (5)
H11A −0.4495 0.5469 0.3644 0.102* 0.705 (5)
C12A −0.2749 (7) 0.5167 (3) 0.2651 (5) 0.0608 (12) 0.705 (5)
H12A −0.3455 0.4877 0.2081 0.073* 0.705 (5)
C13A 0.1816 (13) 0.5795 (9) 0.3311 (9) 0.074 (3) 0.705 (5)
H13A 0.1967 0.6110 0.2619 0.088* 0.705 (5)
H13B 0.2331 0.5214 0.3309 0.088* 0.705 (5)
H13C 0.2316 0.6134 0.3960 0.088* 0.705 (5)
N1 −0.0460 (2) 0.49066 (12) 0.15829 (14) 0.0462 (4)
H1N 0.003 (3) 0.5230 (16) 0.1141 (19) 0.055*
O1 −0.1805 (2) 0.34262 (12) 0.17683 (16) 0.0629 (4)
O2 −0.0363 (2) 0.37672 (10) 0.01067 (12) 0.0560 (4)
Cl1 0.32844 (7) 0.44230 (4) 0.08450 (4) 0.05248 (18)
Cl2 0.58543 (10) 0.20713 (6) 0.40131 (8) 0.0887 (3)
S1 −0.04615 (6) 0.38428 (3) 0.13094 (4) 0.04322 (17)
C7B −0.0109 (13) 0.5386 (5) 0.2733 (7) 0.043 (2) 0.295 (5)
C8B −0.1310 (11) 0.5537 (5) 0.3435 (6) 0.055 (2) 0.295 (5)
C9B −0.080 (4) 0.5925 (14) 0.4520 (14) 0.052 (4) 0.295 (5)
H9B −0.1519 0.5919 0.5073 0.062* 0.295 (5)
C10B 0.0727 (13) 0.6305 (6) 0.4773 (8) 0.068 (3) 0.295 (5)
H10B 0.0964 0.6653 0.5429 0.082* 0.295 (5)
C11B 0.1903 (13) 0.6177 (7) 0.4071 (10) 0.074 (3) 0.295 (5)
H11B 0.2974 0.6398 0.4274 0.088* 0.295 (5)
C12B 0.151 (3) 0.5715 (16) 0.3043 (19) 0.054 (4) 0.295 (5)
H12B 0.2317 0.5624 0.2561 0.064* 0.295 (5)
C13B −0.3078 (15) 0.5262 (10) 0.3116 (11) 0.067 (4) 0.295 (5)
H13D −0.3132 0.4623 0.2989 0.081* 0.295 (5)
H13E −0.3532 0.5569 0.2429 0.081* 0.295 (5)
H13F −0.3709 0.5415 0.3725 0.081* 0.295 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0406 (10) 0.0357 (9) 0.0390 (9) −0.0031 (8) 0.0029 (7) −0.0023 (7)
C2 0.0429 (11) 0.0354 (9) 0.0432 (10) −0.0030 (8) 0.0065 (8) −0.0020 (8)
C3 0.0395 (11) 0.0490 (12) 0.0620 (13) −0.0002 (9) 0.0059 (9) −0.0007 (10)
C4 0.0516 (13) 0.0457 (11) 0.0600 (12) 0.0073 (10) −0.0036 (10) 0.0029 (10)
C5 0.0623 (14) 0.0420 (10) 0.0511 (11) −0.0001 (10) 0.0051 (10) 0.0077 (9)
C6 0.0460 (11) 0.0422 (10) 0.0474 (11) −0.0066 (9) 0.0082 (8) 0.0013 (8)
C7A 0.050 (2) 0.0363 (16) 0.0468 (19) 0.0050 (15) 0.0028 (16) 0.0013 (13)
C8A 0.060 (3) 0.0448 (18) 0.053 (2) 0.0001 (16) 0.0025 (18) 0.0001 (16)
C9A 0.111 (5) 0.051 (5) 0.050 (4) −0.003 (3) 0.012 (4) −0.002 (4)
C10A 0.110 (4) 0.084 (3) 0.085 (3) 0.007 (3) 0.043 (3) −0.020 (2)
C11A 0.071 (3) 0.084 (4) 0.109 (5) 0.005 (3) 0.047 (3) −0.022 (3)
C12A 0.056 (3) 0.053 (2) 0.074 (4) 0.0074 (18) 0.013 (2) −0.007 (2)
C13A 0.059 (4) 0.080 (5) 0.077 (7) −0.011 (3) −0.006 (4) −0.019 (4)
N1 0.0526 (11) 0.0438 (9) 0.0424 (9) 0.0006 (8) 0.0069 (7) 0.0035 (7)
O1 0.0401 (9) 0.0595 (9) 0.0888 (12) −0.0069 (7) 0.0073 (8) 0.0146 (8)
O2 0.0650 (11) 0.0557 (9) 0.0431 (8) −0.0070 (7) −0.0094 (7) −0.0048 (6)
Cl1 0.0507 (3) 0.0533 (3) 0.0544 (3) −0.0078 (2) 0.0107 (2) 0.0094 (2)
Cl2 0.0639 (4) 0.0861 (5) 0.1097 (6) 0.0179 (4) −0.0134 (4) 0.0310 (4)
S1 0.0373 (3) 0.0435 (3) 0.0472 (3) −0.00531 (19) −0.00115 (19) 0.00201 (19)
C7B 0.062 (7) 0.032 (4) 0.033 (4) 0.002 (4) −0.001 (4) −0.008 (3)
C8B 0.068 (6) 0.045 (4) 0.054 (5) 0.007 (4) 0.017 (4) −0.002 (3)
C9B 0.091 (10) 0.035 (7) 0.033 (6) 0.004 (6) 0.022 (6) 0.007 (5)
C10B 0.093 (7) 0.053 (5) 0.057 (5) 0.004 (5) 0.004 (5) −0.020 (4)
C11B 0.064 (6) 0.075 (6) 0.076 (6) −0.003 (5) −0.014 (5) −0.030 (5)
C12B 0.065 (11) 0.046 (6) 0.047 (7) −0.006 (6) −0.004 (7) −0.014 (5)
C13B 0.048 (8) 0.088 (10) 0.069 (10) −0.002 (6) 0.021 (6) −0.021 (7)

Geometric parameters (Å, °)

C1—C2 1.391 (3) C12A—H12A 0.9300
C1—C6 1.393 (3) C13A—H13A 0.9600
C1—S1 1.770 (2) C13A—H13B 0.9600
C2—C3 1.377 (3) C13A—H13C 0.9600
C2—Cl1 1.7337 (19) N1—C7B 1.524 (9)
C3—C4 1.382 (3) N1—S1 1.6125 (18)
C3—H3 0.9300 N1—H1N 0.844 (17)
C4—C5 1.373 (3) O1—S1 1.4183 (17)
C4—Cl2 1.732 (2) O2—S1 1.4326 (15)
C5—C6 1.373 (3) C7B—C8B 1.374 (11)
C5—H5 0.9300 C7B—C12B 1.402 (17)
C6—H6 0.9300 C8B—C9B 1.415 (16)
C7A—C12A 1.381 (7) C8B—C13B 1.492 (13)
C7A—C8A 1.381 (5) C9B—C10B 1.36 (3)
C7A—N1 1.403 (4) C9B—H9B 0.9300
C8A—C9A 1.413 (11) C10B—C11B 1.352 (15)
C8A—C13A 1.492 (11) C10B—H10B 0.9300
C9A—C10A 1.350 (15) C11B—C12B 1.393 (16)
C9A—H9A 0.9300 C11B—H11B 0.9300
C10A—C11A 1.375 (8) C12B—H12B 0.9300
C10A—H10A 0.9300 C13B—H13D 0.9600
C11A—C12A 1.366 (7) C13B—H13E 0.9600
C11A—H11A 0.9300 C13B—H13F 0.9600
C2—C1—C6 119.02 (18) C8A—C13A—H13C 109.5
C2—C1—S1 123.26 (14) H13A—C13A—H13C 109.5
C6—C1—S1 117.69 (15) H13B—C13A—H13C 109.5
C3—C2—C1 120.80 (19) C7A—N1—C7B 31.8 (3)
C3—C2—Cl1 117.70 (16) C7A—N1—S1 121.00 (19)
C1—C2—Cl1 121.49 (15) C7B—N1—S1 129.1 (3)
C2—C3—C4 118.6 (2) C7A—N1—H1N 123.6 (17)
C2—C3—H3 120.7 C7B—N1—H1N 103.4 (17)
C4—C3—H3 120.7 S1—N1—H1N 115.0 (17)
C5—C4—C3 121.7 (2) O1—S1—O2 118.99 (10)
C5—C4—Cl2 119.84 (18) O1—S1—N1 109.42 (11)
C3—C4—Cl2 118.43 (18) O2—S1—N1 105.99 (9)
C4—C5—C6 119.4 (2) O1—S1—C1 105.83 (10)
C4—C5—H5 120.3 O2—S1—C1 108.16 (10)
C6—C5—H5 120.3 N1—S1—C1 108.06 (9)
C5—C6—C1 120.5 (2) C8B—C7B—C12B 119.8 (13)
C5—C6—H6 119.8 C8B—C7B—N1 123.0 (9)
C1—C6—H6 119.8 C12B—C7B—N1 117.1 (11)
C12A—C7A—C8A 121.6 (4) C7B—C8B—C9B 117.4 (14)
C12A—C7A—N1 119.3 (4) C7B—C8B—C13B 122.4 (9)
C8A—C7A—N1 118.9 (4) C9B—C8B—C13B 120.1 (14)
C7A—C8A—C9A 116.3 (7) C10B—C9B—C8B 121.5 (16)
C7A—C8A—C13A 123.6 (5) C10B—C9B—H9B 119.2
C9A—C8A—C13A 120.0 (7) C8B—C9B—H9B 119.2
C10A—C9A—C8A 122.0 (8) C11B—C10B—C9B 120.1 (10)
C10A—C9A—H9A 119.0 C11B—C10B—H10B 120.0
C8A—C9A—H9A 119.0 C9B—C10B—H10B 120.0
C9A—C10A—C11A 119.6 (5) C10B—C11B—C12B 119.9 (13)
C9A—C10A—H10A 120.2 C10B—C11B—H11B 120.1
C11A—C10A—H10A 120.2 C12B—C11B—H11B 120.1
C12A—C11A—C10A 120.4 (6) C11B—C12B—C7B 120.1 (18)
C12A—C11A—H11A 119.8 C11B—C12B—H12B 120.0
C10A—C11A—H11A 119.8 C7B—C12B—H12B 120.0
C11A—C12A—C7A 119.7 (6) C8B—C13B—H13D 109.5
C11A—C12A—H12A 120.1 C8B—C13B—H13E 109.5
C7A—C12A—H12A 120.1 H13D—C13B—H13E 109.5
C8A—C13A—H13A 109.5 C8B—C13B—H13F 109.5
C8A—C13A—H13B 109.5 H13D—C13B—H13F 109.5
H13A—C13A—H13B 109.5 H13E—C13B—H13F 109.5
C6—C1—C2—C3 0.4 (3) C7A—N1—S1—O1 29.7 (3)
S1—C1—C2—C3 −178.13 (16) C7B—N1—S1—O1 67.6 (5)
C6—C1—C2—Cl1 −178.41 (15) C7A—N1—S1—O2 159.2 (2)
S1—C1—C2—Cl1 3.1 (2) C7B—N1—S1—O2 −162.9 (5)
C1—C2—C3—C4 −1.0 (3) C7A—N1—S1—C1 −85.1 (2)
Cl1—C2—C3—C4 177.79 (16) C7B—N1—S1—C1 −47.2 (5)
C2—C3—C4—C5 0.5 (3) C2—C1—S1—O1 179.13 (16)
C2—C3—C4—Cl2 −178.15 (17) C6—C1—S1—O1 0.62 (18)
C3—C4—C5—C6 0.6 (3) C2—C1—S1—O2 50.59 (18)
Cl2—C4—C5—C6 179.28 (17) C6—C1—S1—O2 −127.93 (15)
C4—C5—C6—C1 −1.3 (3) C2—C1—S1—N1 −63.73 (18)
C2—C1—C6—C5 0.8 (3) C6—C1—S1—N1 117.75 (16)
S1—C1—C6—C5 179.39 (16) C7A—N1—C7B—C8B 1.1 (5)
C12A—C7A—C8A—C9A −1.7 (7) S1—N1—C7B—C8B −86.0 (8)
N1—C7A—C8A—C9A 173.1 (5) C7A—N1—C7B—C12B −176.0 (15)
C12A—C7A—C8A—C13A −178.6 (8) S1—N1—C7B—C12B 96.9 (13)
N1—C7A—C8A—C13A −3.8 (8) C12B—C7B—C8B—C9B −7.9 (19)
C7A—C8A—C9A—C10A 6.4 (11) N1—C7B—C8B—C9B 175.0 (12)
C13A—C8A—C9A—C10A −176.6 (9) C12B—C7B—C8B—C13B 175.7 (15)
C8A—C9A—C10A—C11A −7.2 (13) N1—C7B—C8B—C13B −1.4 (12)
C9A—C10A—C11A—C12A 3.2 (11) C7B—C8B—C9B—C10B 14 (3)
C10A—C11A—C12A—C7A 1.3 (9) C13B—C8B—C9B—C10B −170.0 (16)
C8A—C7A—C12A—C11A −2.0 (7) C8B—C9B—C10B—C11B −12 (3)
N1—C7A—C12A—C11A −176.8 (5) C9B—C10B—C11B—C12B 5(2)
C12A—C7A—N1—C7B 177.2 (8) C10B—C11B—C12B—C7B 0(3)
C8A—C7A—N1—C7B 2.3 (5) C8B—C7B—C12B—C11B 1(2)
C12A—C7A—N1—S1 −67.5 (4) N1—C7B—C12B—C11B 178.6 (13)
C8A—C7A—N1—S1 117.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (2) 2.13 (2) 2.936 (2) 159 (2)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5340).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o1520. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Private communication (refcode CCDC 740692). CCDC, Union Road, Cambridge, England.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  8. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (1987). REDU4Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035166/bt5340sup1.cif

e-66-o2542-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035166/bt5340Isup2.hkl

e-66-o2542-Isup2.hkl (122.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES