Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 18;66(Pt 10):o2587–o2588. doi: 10.1107/S1600536810036743

7-[(3,5-Di-tert-butyl-2-hy­droxy­benzyl­idene)amino]-4-methyl-2H-chromen-2-one

Elham S Aazam a,*, Orhan Büyükgüngör b
PMCID: PMC2983148  PMID: 21587568

Abstract

The title compound, C25H29NO3, is a Schiff base derivative of coumarin 120. There are two structurally similar but crystallographically independent mol­ecules in the asymmetric unit. Both mol­ecules exist in E configurations with respect to the C=N double bonds. The dihedral angles between the coumarin and 3,5-di-tert-butyl-2-hy­droxy­benzyl­idene ring planes are 4.62 (7) and 14.62 (7)° for the two mol­ecules. Intra­molecular O—H⋯N hydrogen bonding involving the O—H groups and the azomethine N atoms generate S(6) rings. In the crystal structure, independent mol­ecules are linked by C—H⋯π inter­actions, with groups of four mol­ecules stacked along the c axis.

Related literature

For the chemistry and catalytic properties of coumarin-derived Schiff base complexes, see: Youssef et al. (2009). For their biological and pharmacological properties, see: Kulkarni et al. (2009); Youssef et al. (2009); Ronad et al. (2008). For their applications as dyes and fluorescent agents, see: Kachkovski et al. (2004); Creaven et al. (2009). For related structures, see: Honda et al. (1996); Aazam et al. (2006, 2008, 2010); El Husseiny et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o2587-scheme1.jpg

Experimental

Crystal data

  • C25H29NO3

  • M r = 391.49

  • Monoclinic, Inline graphic

  • a = 17.6067 (14) Å

  • b = 9.6853 (5) Å

  • c = 27.237 (3) Å

  • β = 109.832 (6)°

  • V = 4369.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.20 × 0.05 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • 29259 measured reflections

  • 8242 independent reflections

  • 3118 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.146

  • S = 0.84

  • 8242 reflections

  • 524 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036743/sj5038sup1.cif

e-66-o2587-sup1.cif (34.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036743/sj5038Isup2.hkl

e-66-o2587-Isup2.hkl (395.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C26–C31 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.80 2.538 (4) 149
O4—H4A⋯N2 0.82 1.80 2.537 (4) 149
C25—H25BCg1 0.96 2.73 3.536 (4) 143
C50—H50ACg2i 0.96 2.80 3.571 (4) 138
C50—H50BCg1ii 0.96 2.91 3.569 (4) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge King Abdulaziz University for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Coumarin-derived Schiff bases are regarded as "privileged ligands" due to their ability to form complexes with different transition metals that can act as catalysts for many different reactions (Youssef et al., 2009). They have been found to exhibit biological and plant regulating activities (Kulkarni et al., 2009; Youssef et al., 2009). They can also act as anti-inflammatory and analgesic agents (Ronad et al., 2008). Several reports of their applications as dyes and fluorescent agents have appeared (Kachkovski et al., 2004; Creaven et al., 2009).

In a continuation of our interest in the synthesis, crystal structure elucidation (Aazam et al., 2006, 2008, 2010), biological activity and photophysical properties of Schiff-base ligands incorporating a coumarin moiety and their metal complexes (El Husseiny et al., 2008), we report here the crystal structure of a newly synthesized coumarin Schiff base derived from 7-amino-4-methyl coumarin and 3,5-di-t-butyl-2-hydroxybenzaldehyde.

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules, A and B (Honda et al. ,1996). The two independent molecules differ in planarity, where molecule A is more planar than molecule B, having dihedral angles between the coumarin and 3,5-di-tert-butyl- 2-hydroxybenzylidene ring planes of 4.64 (7)° and 14.62 (7)° for molecule A and B respectively. The planarity of both molecules is greater than that of the related 4-methyl-7-(salicylideneamino)coumarin Schiff base where the corresponding dihedral angle was 24.0 (1)° (Aazam et al., 2006). The greater planarity of the title compound may explain the higher fluorescence quantum yield of 0.53 observed (compared with Φf = 0.43 for 4-methyl-7-(salicylideneamino) coumarin in DMSO).

The terminal C=O bond distances of 1.203 (4)Å and 1.209 (4)Å agree with 1.2119 (15)Å found in the related compound 4-methyl-7-(salicylideneamino) coumarin (Aazam et al.2006), but are shorter than that of 1.3040 (17)Å found in 8-[(1E)-1-(2-Aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate (Aazam et al., 2010). Intramolecular O—H···N hydrogen bonding involving the O–H groups and the azomethine N atoms generate S(6) rings (Bernstein et al., 1995). In the crystal structure, the independent molecules are linked by C—H···π interactions, with groups of four molecules stacked along the c axis (Fig. 2).

Experimental

3,5-di-tertbutyl-2-hydroxybenzaldehyde (0.26 g, 1.50 mmol) in 20 ml of absolute ethanol was added to a warm solution of 7-amino-4-methyl coumarin (0.35 g, 1.5 mmol) in 30 ml of absolute ethanol. The mixture was refluxed for 3 hrs upon which a yellow solution was formed. The solvent was pumped off by rotary evaporation leaving behind an orange solid shown to be pure by NMR spectroscopy. The product was recrystallized from chloroform by slow evaporation forming orange needles. Yield (68%, 0.4 g, 1.02 mmol).

Refinement

H atoms were positioned geometrically (C–H = 0.93 or 0.96 Å, O–H = 0.82 Å) and refined using a riding model. The Uiso(H) values were set at 1.2Ueq(C aromatic) and 1.5Ueq(C methyl, O).

Figures

Fig. 1.

Fig. 1.

A view of molecule of molecule A and B. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, with displacement ellipsoids displayed at the 30% probability level. The t-butyl substituents on the benzene ring and H atoms not involved in C—H···π interactions (shown as dashed lines) have been omitted for clarity.

Crystal data

C25H29NO3 F(000) = 1680
Mr = 391.49 Dx = 1.190 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15467 reflections
a = 17.6067 (14) Å θ = 1.2–26.2°
b = 9.6853 (5) Å µ = 0.08 mm1
c = 27.237 (3) Å T = 296 K
β = 109.832 (6)° Plate, light brown
V = 4369.2 (6) Å3 0.32 × 0.20 × 0.05 mm
Z = 8

Data collection

Stoe IPDS 2 diffractometer 3118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.072
graphite θmax = 25.7°, θmin = 1.2°
rotation method scans h = −21→21
29259 measured reflections k = −11→11
8242 independent reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0578P)2] where P = (Fo2 + 2Fc2)/3
8242 reflections (Δ/σ)max < 0.001
524 parameters Δρmax = 0.31 e Å3
84 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.71746 (19) 0.2973 (3) 0.62303 (13) 0.0465 (9)
C2 0.7896 (2) 0.2190 (3) 0.64044 (13) 0.0472 (9)
C3 0.8653 (2) 0.2821 (3) 0.65273 (13) 0.0479 (9)
C4 0.8651 (2) 0.4252 (3) 0.64687 (14) 0.0555 (10)
H4 0.9147 0.4694 0.6546 0.067*
C5 0.7956 (2) 0.5068 (3) 0.63012 (14) 0.0503 (9)
C6 0.7225 (2) 0.4405 (4) 0.61833 (13) 0.0503 (9)
H6 0.6752 0.4923 0.6069 0.060*
C7 0.9434 (2) 0.1987 (3) 0.66976 (15) 0.0552 (10)
C8 0.9451 (2) 0.1059 (4) 0.62451 (17) 0.0831 (13)
H8A 0.9417 0.1621 0.5948 0.100*
H8B 0.9001 0.0435 0.6156 0.100*
H8C 0.9945 0.0541 0.6348 0.100*
C9 0.9506 (2) 0.1101 (4) 0.71730 (16) 0.0850 (13)
H9A 0.9057 0.0476 0.7091 0.102*
H9B 0.9507 0.1684 0.7458 0.102*
H9C 1.0000 0.0584 0.7270 0.102*
C10 1.0184 (2) 0.2909 (4) 0.68392 (17) 0.0779 (12)
H10A 1.0193 0.3507 0.7122 0.093*
H10B 1.0169 0.3454 0.6542 0.093*
H10C 1.0660 0.2343 0.6943 0.093*
C11 0.8004 (2) 0.6645 (4) 0.62607 (17) 0.0633 (11)
C12 0.7749 (3) 0.7289 (4) 0.66932 (17) 0.0899 (14)
H12A 0.8105 0.6982 0.7027 0.108*
H12B 0.7206 0.7013 0.6650 0.108*
H12C 0.7774 0.8277 0.6674 0.108*
C13 0.8853 (3) 0.7151 (5) 0.6345 (2) 0.1178 (18)
H13A 0.9045 0.6754 0.6086 0.141*
H13B 0.9202 0.6880 0.6686 0.141*
H13C 0.8851 0.8139 0.6317 0.141*
C14 0.7431 (3) 0.7135 (4) 0.57389 (16) 0.0835 (13)
H14A 0.6890 0.6867 0.5703 0.100*
H14B 0.7581 0.6728 0.5463 0.100*
H14C 0.7460 0.8123 0.5720 0.100*
C15 0.6386 (2) 0.2320 (4) 0.60526 (13) 0.0487 (9)
H15 0.5923 0.2859 0.5927 0.058*
C16 0.5586 (2) 0.0272 (3) 0.58550 (13) 0.0476 (9)
C17 0.4838 (2) 0.0864 (4) 0.55885 (14) 0.0556 (10)
H17 0.4784 0.1818 0.5557 0.067*
C18 0.4178 (2) 0.0014 (4) 0.53712 (14) 0.0536 (10)
H18 0.3679 0.0415 0.5197 0.064*
C19 0.4233 (2) −0.1423 (4) 0.54042 (13) 0.0475 (9)
C20 0.4982 (2) −0.1965 (3) 0.56716 (13) 0.0484 (9)
C21 0.5650 (2) −0.1151 (4) 0.59003 (14) 0.0530 (9)
H21 0.6143 −0.1556 0.6085 0.064*
C22 0.3565 (2) −0.2352 (4) 0.51815 (13) 0.0500 (9)
C23 0.3719 (2) −0.3718 (4) 0.52296 (15) 0.0629 (11)
H23 0.3290 −0.4321 0.5085 0.075*
C24 0.4500 (2) −0.4303 (4) 0.54877 (14) 0.0625 (11)
C25 0.2738 (2) −0.1795 (4) 0.49157 (14) 0.0658 (11)
H25A 0.2740 −0.1219 0.4629 0.079*
H25B 0.2574 −0.1261 0.5159 0.079*
H25C 0.2368 −0.2546 0.4787 0.079*
N1 0.63226 (16) 0.0999 (3) 0.60680 (11) 0.0507 (8)
O1 0.78494 (14) 0.0796 (2) 0.64396 (10) 0.0644 (7)
H1A 0.7374 0.0565 0.6357 0.097*
O2 0.46800 (18) −0.5512 (3) 0.55272 (12) 0.0875 (10)
O3 0.51209 (14) −0.3380 (2) 0.57174 (10) 0.0606 (7)
C26 0.67182 (18) 0.1911 (3) 0.36205 (12) 0.0424 (8)
C27 0.7414 (2) 0.2736 (3) 0.38276 (13) 0.0479 (9)
C28 0.81763 (19) 0.2128 (3) 0.40647 (13) 0.0478 (9)
C29 0.8196 (2) 0.0694 (4) 0.40745 (13) 0.0520 (9)
H29 0.8696 0.0273 0.4229 0.062*
C30 0.7525 (2) −0.0166 (3) 0.38701 (13) 0.0466 (9)
C31 0.6791 (2) 0.0473 (3) 0.36445 (13) 0.0482 (9)
H31 0.6331 −0.0066 0.3504 0.058*
C32 0.89406 (19) 0.3001 (4) 0.43076 (15) 0.0557 (10)
C33 0.9692 (2) 0.2112 (4) 0.45430 (18) 0.0809 (13)
H33A 0.9765 0.1531 0.4277 0.097*
H33B 0.9628 0.1550 0.4816 0.097*
H33C 1.0155 0.2697 0.4684 0.097*
C34 0.8854 (2) 0.3901 (4) 0.47456 (16) 0.0741 (12)
H34A 0.8778 0.3323 0.5011 0.089*
H34B 0.8396 0.4499 0.4608 0.089*
H34C 0.9333 0.4446 0.4893 0.089*
C35 0.9091 (2) 0.3908 (4) 0.38876 (16) 0.0744 (12)
H35A 0.8636 0.4506 0.3737 0.089*
H35B 0.9163 0.3332 0.3620 0.089*
H35C 0.9567 0.4455 0.4043 0.089*
C36 0.7602 (2) −0.1747 (4) 0.39020 (15) 0.0548 (10)
C37 0.8450 (3) −0.2233 (4) 0.4182 (2) 0.1033 (16)
H37A 0.8633 −0.1883 0.4532 0.124*
H37B 0.8798 −0.1904 0.4002 0.124*
H37C 0.8460 −0.3224 0.4190 0.124*
C38 0.7046 (3) −0.2350 (4) 0.41652 (17) 0.0836 (13)
H38A 0.6499 −0.2097 0.3972 0.100*
H38B 0.7193 −0.1998 0.4515 0.100*
H38C 0.7095 −0.3338 0.4176 0.100*
C39 0.7345 (3) −0.2358 (4) 0.33471 (16) 0.0851 (13)
H39A 0.7690 −0.2006 0.3169 0.102*
H39B 0.6796 −0.2103 0.3159 0.102*
H39C 0.7388 −0.3346 0.3368 0.102*
C40 0.59273 (19) 0.2538 (4) 0.33832 (13) 0.0492 (9)
H40 0.5476 0.1978 0.3246 0.059*
C41 0.5103 (2) 0.4573 (3) 0.31500 (13) 0.0483 (9)
C42 0.4340 (2) 0.3969 (4) 0.29606 (14) 0.0549 (10)
H42 0.4285 0.3014 0.2958 0.066*
C43 0.3672 (2) 0.4796 (4) 0.27784 (13) 0.0550 (10)
H43 0.3166 0.4380 0.2653 0.066*
C44 0.3715 (2) 0.6238 (4) 0.27722 (13) 0.0467 (9)
C45 0.4483 (2) 0.6801 (3) 0.29646 (14) 0.0495 (9)
C46 0.5164 (2) 0.5999 (4) 0.31460 (14) 0.0542 (10)
H46 0.5670 0.6415 0.3267 0.065*
C47 0.3032 (2) 0.7170 (4) 0.25793 (13) 0.0527 (9)
C48 0.3177 (3) 0.8536 (4) 0.26011 (15) 0.0642 (11)
H48 0.2738 0.9128 0.2475 0.077*
C49 0.3967 (3) 0.9138 (4) 0.28057 (15) 0.0608 (10)
C50 0.2196 (2) 0.6579 (4) 0.23672 (15) 0.0687 (11)
H50A 0.2094 0.6025 0.2631 0.082*
H50B 0.2150 0.6016 0.2068 0.082*
H50C 0.1810 0.7316 0.2267 0.082*
N2 0.58451 (16) 0.3866 (3) 0.33607 (11) 0.0516 (8)
O4 0.73564 (13) 0.4132 (2) 0.38099 (9) 0.0616 (7)
H4A 0.6884 0.4357 0.3664 0.092*
O5 0.41309 (18) 1.0345 (3) 0.28431 (11) 0.0795 (9)
O6 0.46070 (14) 0.8222 (2) 0.29799 (10) 0.0615 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.046 (2) 0.045 (2) 0.048 (2) −0.0058 (17) 0.0157 (16) −0.0017 (17)
C2 0.051 (2) 0.037 (2) 0.053 (2) −0.0006 (16) 0.0169 (18) 0.0018 (16)
C3 0.050 (2) 0.041 (2) 0.054 (2) −0.0001 (16) 0.0187 (17) 0.0008 (17)
C4 0.052 (2) 0.046 (2) 0.068 (3) −0.0034 (18) 0.0206 (19) 0.0006 (19)
C5 0.048 (2) 0.040 (2) 0.061 (2) −0.0013 (17) 0.0180 (18) 0.0041 (18)
C6 0.048 (2) 0.047 (2) 0.055 (2) 0.0013 (17) 0.0165 (17) 0.0039 (18)
C7 0.049 (2) 0.044 (2) 0.070 (3) 0.0044 (17) 0.0160 (18) 0.004 (2)
C8 0.073 (3) 0.071 (2) 0.105 (3) 0.009 (2) 0.031 (2) −0.011 (2)
C9 0.069 (2) 0.082 (3) 0.094 (3) 0.007 (2) 0.014 (2) 0.022 (2)
C10 0.056 (2) 0.068 (2) 0.103 (3) 0.002 (2) 0.018 (2) 0.000 (2)
C11 0.057 (2) 0.041 (2) 0.093 (3) 0.0015 (18) 0.027 (2) 0.015 (2)
C12 0.109 (3) 0.052 (2) 0.091 (3) 0.004 (2) 0.011 (2) 0.000 (2)
C13 0.090 (3) 0.068 (3) 0.189 (4) −0.011 (2) 0.039 (3) 0.030 (3)
C14 0.106 (3) 0.059 (2) 0.085 (3) 0.008 (2) 0.032 (2) 0.018 (2)
C15 0.044 (2) 0.051 (2) 0.050 (2) −0.0001 (17) 0.0161 (17) −0.0006 (18)
C16 0.041 (2) 0.050 (2) 0.051 (2) −0.0034 (17) 0.0148 (16) −0.0006 (18)
C17 0.057 (2) 0.044 (2) 0.067 (3) 0.0048 (18) 0.0220 (19) 0.0015 (19)
C18 0.041 (2) 0.057 (2) 0.061 (2) 0.0024 (18) 0.0146 (18) −0.0032 (19)
C19 0.045 (2) 0.051 (2) 0.047 (2) −0.0041 (17) 0.0162 (17) −0.0020 (17)
C20 0.053 (2) 0.042 (2) 0.051 (2) −0.0045 (18) 0.0192 (18) 0.0023 (18)
C21 0.045 (2) 0.054 (2) 0.056 (2) 0.0016 (18) 0.0116 (17) 0.0024 (19)
C22 0.049 (2) 0.060 (2) 0.042 (2) −0.0094 (18) 0.0159 (17) −0.0056 (18)
C23 0.066 (3) 0.060 (3) 0.060 (3) −0.023 (2) 0.018 (2) −0.008 (2)
C24 0.071 (3) 0.053 (3) 0.058 (3) −0.012 (2) 0.015 (2) −0.003 (2)
C25 0.058 (2) 0.078 (2) 0.062 (2) −0.010 (2) 0.0209 (18) −0.012 (2)
N1 0.0504 (18) 0.0427 (18) 0.058 (2) −0.0060 (14) 0.0171 (14) −0.0006 (15)
O1 0.0574 (16) 0.0368 (14) 0.091 (2) −0.0038 (12) 0.0151 (14) 0.0042 (13)
O2 0.104 (2) 0.0444 (17) 0.106 (3) −0.0065 (16) 0.0258 (19) 0.0004 (16)
O3 0.0566 (16) 0.0443 (14) 0.0735 (18) −0.0036 (12) 0.0125 (13) 0.0014 (13)
C26 0.0369 (19) 0.047 (2) 0.041 (2) −0.0025 (16) 0.0111 (15) 0.0019 (16)
C27 0.053 (2) 0.039 (2) 0.050 (2) 0.0032 (17) 0.0146 (18) 0.0027 (17)
C28 0.0397 (19) 0.046 (2) 0.055 (2) −0.0021 (16) 0.0128 (16) 0.0017 (17)
C29 0.044 (2) 0.050 (2) 0.056 (2) 0.0050 (17) 0.0088 (17) 0.0042 (18)
C30 0.044 (2) 0.0399 (19) 0.051 (2) 0.0024 (16) 0.0105 (16) 0.0009 (17)
C31 0.051 (2) 0.042 (2) 0.050 (2) −0.0052 (17) 0.0156 (17) −0.0020 (17)
C32 0.039 (2) 0.053 (2) 0.069 (3) −0.0025 (17) 0.0116 (18) 0.002 (2)
C33 0.055 (2) 0.069 (2) 0.104 (3) −0.007 (2) 0.007 (2) 0.005 (2)
C34 0.063 (2) 0.071 (2) 0.081 (3) −0.021 (2) 0.016 (2) −0.010 (2)
C35 0.064 (2) 0.073 (2) 0.089 (3) −0.012 (2) 0.029 (2) 0.004 (2)
C36 0.053 (2) 0.046 (2) 0.062 (3) 0.0054 (18) 0.0156 (19) 0.0056 (19)
C37 0.087 (3) 0.058 (2) 0.140 (4) 0.006 (2) 0.006 (3) 0.009 (2)
C38 0.103 (3) 0.057 (2) 0.096 (3) −0.003 (2) 0.042 (2) 0.004 (2)
C39 0.109 (3) 0.065 (2) 0.085 (3) 0.003 (2) 0.037 (2) −0.001 (2)
C40 0.044 (2) 0.054 (2) 0.047 (2) −0.0025 (17) 0.0110 (16) −0.0019 (18)
C41 0.046 (2) 0.047 (2) 0.048 (2) 0.0016 (17) 0.0110 (17) 0.0017 (17)
C42 0.053 (2) 0.046 (2) 0.061 (2) 0.0044 (18) 0.0130 (18) 0.0003 (18)
C43 0.049 (2) 0.055 (2) 0.058 (3) 0.0004 (19) 0.0145 (19) 0.0001 (19)
C44 0.046 (2) 0.051 (2) 0.042 (2) 0.0050 (17) 0.0138 (17) 0.0016 (17)
C45 0.055 (2) 0.040 (2) 0.055 (2) 0.0025 (18) 0.0209 (18) 0.0015 (17)
C46 0.041 (2) 0.057 (2) 0.062 (3) −0.0017 (18) 0.0142 (18) 0.002 (2)
C47 0.049 (2) 0.067 (3) 0.042 (2) 0.0101 (19) 0.0150 (17) 0.0022 (19)
C48 0.074 (3) 0.062 (3) 0.060 (3) 0.023 (2) 0.027 (2) 0.014 (2)
C49 0.074 (3) 0.054 (2) 0.057 (3) 0.009 (2) 0.025 (2) 0.006 (2)
C50 0.057 (2) 0.078 (2) 0.067 (2) 0.017 (2) 0.0163 (19) 0.002 (2)
N2 0.0433 (17) 0.0456 (18) 0.061 (2) 0.0070 (14) 0.0115 (14) 0.0054 (15)
O4 0.0467 (15) 0.0432 (15) 0.0863 (19) 0.0006 (12) 0.0115 (13) 0.0039 (13)
O5 0.104 (2) 0.0458 (17) 0.090 (2) 0.0101 (15) 0.0349 (18) 0.0071 (15)
O6 0.0628 (17) 0.0441 (15) 0.0746 (19) 0.0052 (13) 0.0194 (14) 0.0014 (13)

Geometric parameters (Å, °)

C1—C6 1.398 (5) C26—C31 1.398 (5)
C1—C2 1.417 (4) C26—C27 1.410 (4)
C1—C15 1.452 (4) C26—C40 1.454 (4)
C2—O1 1.358 (4) C27—O4 1.356 (4)
C2—C3 1.399 (4) C27—C28 1.406 (4)
C3—C4 1.395 (5) C28—C29 1.390 (5)
C3—C7 1.526 (4) C28—C32 1.536 (5)
C4—C5 1.397 (4) C29—C30 1.398 (4)
C4—H4 0.9300 C29—H29 0.9300
C5—C6 1.375 (4) C30—C31 1.375 (4)
C5—C11 1.536 (5) C30—C36 1.537 (5)
C6—H6 0.9300 C31—H31 0.9300
C7—C9 1.522 (5) C32—C33 1.525 (5)
C7—C10 1.531 (5) C32—C34 1.526 (5)
C7—C8 1.533 (5) C32—C35 1.535 (5)
C8—H8A 0.9600 C33—H33A 0.9600
C8—H8B 0.9600 C33—H33B 0.9600
C8—H8C 0.9600 C33—H33C 0.9600
C9—H9A 0.9600 C34—H34A 0.9600
C9—H9B 0.9600 C34—H34B 0.9600
C9—H9C 0.9600 C34—H34C 0.9600
C10—H10A 0.9600 C35—H35A 0.9600
C10—H10B 0.9600 C35—H35B 0.9600
C10—H10C 0.9600 C35—H35C 0.9600
C11—C14 1.513 (5) C36—C37 1.503 (5)
C11—C13 1.515 (5) C36—C38 1.513 (5)
C11—C12 1.529 (6) C36—C39 1.541 (5)
C12—H12A 0.9600 C37—H37A 0.9600
C12—H12B 0.9600 C37—H37B 0.9600
C12—H12C 0.9600 C37—H37C 0.9600
C13—H13A 0.9600 C38—H38A 0.9600
C13—H13B 0.9600 C38—H38B 0.9600
C13—H13C 0.9600 C38—H38C 0.9600
C14—H14A 0.9600 C39—H39A 0.9600
C14—H14B 0.9600 C39—H39B 0.9600
C14—H14C 0.9600 C39—H39C 0.9600
C15—N1 1.286 (4) C40—N2 1.294 (4)
C15—H15 0.9300 C40—H40 0.9300
C16—C21 1.384 (5) C41—C46 1.386 (5)
C16—C17 1.393 (4) C41—C42 1.394 (5)
C16—N1 1.416 (4) C41—N2 1.413 (4)
C17—C18 1.382 (5) C42—C43 1.369 (4)
C17—H17 0.9300 C42—H42 0.9300
C18—C19 1.396 (5) C43—C44 1.399 (5)
C18—H18 0.9300 C43—H43 0.9300
C19—C20 1.376 (5) C44—C45 1.386 (5)
C19—C22 1.442 (5) C44—C47 1.453 (4)
C20—C21 1.378 (4) C45—C46 1.372 (4)
C20—O3 1.390 (4) C45—O6 1.392 (4)
C21—H21 0.9300 C46—H46 0.9300
C22—C23 1.348 (5) C47—C48 1.344 (5)
C22—C25 1.489 (5) C47—C50 1.500 (5)
C23—C24 1.432 (5) C48—C49 1.434 (5)
C23—H23 0.9300 C48—H48 0.9300
C24—O2 1.208 (4) C49—O5 1.201 (4)
C24—O3 1.386 (4) C49—O6 1.385 (4)
C25—H25A 0.9600 C50—H50A 0.9600
C25—H25B 0.9600 C50—H50B 0.9600
C25—H25C 0.9600 C50—H50C 0.9600
O1—H1A 0.8200 O4—H4A 0.8200
C6—C1—C2 119.0 (3) C31—C26—C27 119.5 (3)
C6—C1—C15 119.0 (3) C31—C26—C40 119.7 (3)
C2—C1—C15 121.7 (3) C27—C26—C40 120.8 (3)
O1—C2—C3 119.6 (3) O4—C27—C28 118.8 (3)
O1—C2—C1 119.1 (3) O4—C27—C26 120.5 (3)
C3—C2—C1 121.3 (3) C28—C27—C26 120.7 (3)
C4—C3—C2 116.2 (3) C29—C28—C27 116.2 (3)
C4—C3—C7 121.8 (3) C29—C28—C32 121.9 (3)
C2—C3—C7 121.9 (3) C27—C28—C32 121.9 (3)
C3—C4—C5 124.5 (3) C28—C29—C30 125.1 (3)
C3—C4—H4 117.7 C28—C29—H29 117.4
C5—C4—H4 117.7 C30—C29—H29 117.4
C6—C5—C4 117.4 (3) C31—C30—C29 116.7 (3)
C6—C5—C11 121.2 (3) C31—C30—C36 121.7 (3)
C4—C5—C11 121.5 (3) C29—C30—C36 121.6 (3)
C5—C6—C1 121.6 (3) C30—C31—C26 121.8 (3)
C5—C6—H6 119.2 C30—C31—H31 119.1
C1—C6—H6 119.2 C26—C31—H31 119.1
C9—C7—C3 111.3 (3) C33—C32—C34 107.2 (3)
C9—C7—C10 107.4 (3) C33—C32—C35 107.0 (3)
C3—C7—C10 112.3 (3) C34—C32—C35 110.1 (3)
C9—C7—C8 109.6 (3) C33—C32—C28 112.2 (3)
C3—C7—C8 109.1 (3) C34—C32—C28 110.2 (3)
C10—C7—C8 107.1 (3) C35—C32—C28 110.0 (3)
C7—C8—H8A 109.5 C32—C33—H33A 109.5
C7—C8—H8B 109.5 C32—C33—H33B 109.5
H8A—C8—H8B 109.5 H33A—C33—H33B 109.5
C7—C8—H8C 109.5 C32—C33—H33C 109.5
H8A—C8—H8C 109.5 H33A—C33—H33C 109.5
H8B—C8—H8C 109.5 H33B—C33—H33C 109.5
C7—C9—H9A 109.5 C32—C34—H34A 109.5
C7—C9—H9B 109.5 C32—C34—H34B 109.5
H9A—C9—H9B 109.5 H34A—C34—H34B 109.5
C7—C9—H9C 109.5 C32—C34—H34C 109.5
H9A—C9—H9C 109.5 H34A—C34—H34C 109.5
H9B—C9—H9C 109.5 H34B—C34—H34C 109.5
C7—C10—H10A 109.5 C32—C35—H35A 109.5
C7—C10—H10B 109.5 C32—C35—H35B 109.5
H10A—C10—H10B 109.5 H35A—C35—H35B 109.5
C7—C10—H10C 109.5 C32—C35—H35C 109.5
H10A—C10—H10C 109.5 H35A—C35—H35C 109.5
H10B—C10—H10C 109.5 H35B—C35—H35C 109.5
C14—C11—C13 110.5 (4) C37—C36—C38 109.2 (3)
C14—C11—C12 108.6 (3) C37—C36—C30 113.2 (3)
C13—C11—C12 106.5 (4) C38—C36—C30 110.6 (3)
C14—C11—C5 110.1 (3) C37—C36—C39 106.7 (3)
C13—C11—C5 112.8 (3) C38—C36—C39 107.1 (3)
C12—C11—C5 108.2 (3) C30—C36—C39 109.7 (3)
C11—C12—H12A 109.5 C36—C37—H37A 109.5
C11—C12—H12B 109.5 C36—C37—H37B 109.5
H12A—C12—H12B 109.5 H37A—C37—H37B 109.5
C11—C12—H12C 109.5 C36—C37—H37C 109.5
H12A—C12—H12C 109.5 H37A—C37—H37C 109.5
H12B—C12—H12C 109.5 H37B—C37—H37C 109.5
C11—C13—H13A 109.5 C36—C38—H38A 109.5
C11—C13—H13B 109.5 C36—C38—H38B 109.5
H13A—C13—H13B 109.5 H38A—C38—H38B 109.5
C11—C13—H13C 109.5 C36—C38—H38C 109.5
H13A—C13—H13C 109.5 H38A—C38—H38C 109.5
H13B—C13—H13C 109.5 H38B—C38—H38C 109.5
C11—C14—H14A 109.5 C36—C39—H39A 109.5
C11—C14—H14B 109.5 C36—C39—H39B 109.5
H14A—C14—H14B 109.5 H39A—C39—H39B 109.5
C11—C14—H14C 109.5 C36—C39—H39C 109.5
H14A—C14—H14C 109.5 H39A—C39—H39C 109.5
H14B—C14—H14C 109.5 H39B—C39—H39C 109.5
N1—C15—C1 120.4 (3) N2—C40—C26 120.7 (3)
N1—C15—H15 119.8 N2—C40—H40 119.6
C1—C15—H15 119.8 C26—C40—H40 119.6
C21—C16—C17 119.3 (3) C46—C41—C42 118.9 (3)
C21—C16—N1 115.0 (3) C46—C41—N2 115.0 (3)
C17—C16—N1 125.6 (3) C42—C41—N2 126.1 (3)
C18—C17—C16 119.1 (3) C43—C42—C41 119.4 (4)
C18—C17—H17 120.4 C43—C42—H42 120.3
C16—C17—H17 120.4 C41—C42—H42 120.3
C17—C18—C19 122.4 (3) C42—C43—C44 123.0 (4)
C17—C18—H18 118.8 C42—C43—H43 118.5
C19—C18—H18 118.8 C44—C43—H43 118.5
C20—C19—C18 116.6 (3) C45—C44—C43 116.0 (3)
C20—C19—C22 118.9 (3) C45—C44—C47 118.3 (3)
C18—C19—C22 124.5 (3) C43—C44—C47 125.7 (3)
C19—C20—C21 122.6 (3) C46—C45—C44 122.3 (3)
C19—C20—O3 122.1 (3) C46—C45—O6 116.1 (3)
C21—C20—O3 115.2 (3) C44—C45—O6 121.6 (3)
C20—C21—C16 119.9 (3) C45—C46—C41 120.4 (3)
C20—C21—H21 120.1 C45—C46—H46 119.8
C16—C21—H21 120.1 C41—C46—H46 119.8
C23—C22—C19 117.6 (3) C48—C47—C44 118.3 (4)
C23—C22—C25 122.3 (3) C48—C47—C50 122.7 (3)
C19—C22—C25 120.1 (3) C44—C47—C50 119.0 (3)
C22—C23—C24 124.4 (4) C47—C48—C49 124.2 (4)
C22—C23—H23 117.8 C47—C48—H48 117.9
C24—C23—H23 117.8 C49—C48—H48 117.9
O2—C24—O3 116.2 (4) O5—C49—O6 116.7 (4)
O2—C24—C23 127.4 (4) O5—C49—C48 127.1 (4)
O3—C24—C23 116.4 (4) O6—C49—C48 116.2 (3)
C22—C25—H25A 109.5 C47—C50—H50A 109.5
C22—C25—H25B 109.5 C47—C50—H50B 109.5
H25A—C25—H25B 109.5 H50A—C50—H50B 109.5
C22—C25—H25C 109.5 C47—C50—H50C 109.5
H25A—C25—H25C 109.5 H50A—C50—H50C 109.5
H25B—C25—H25C 109.5 H50B—C50—H50C 109.5
C15—N1—C16 124.0 (3) C40—N2—C41 125.0 (3)
C2—O1—H1A 109.5 C27—O4—H4A 109.5
C24—O3—C20 120.5 (3) C49—O6—C45 121.4 (3)
C6—C1—C2—O1 −178.6 (3) C31—C26—C27—O4 −179.8 (3)
C15—C1—C2—O1 −4.6 (5) C40—C26—C27—O4 0.2 (5)
C6—C1—C2—C3 −0.2 (5) C31—C26—C27—C28 −1.0 (5)
C15—C1—C2—C3 173.8 (3) C40—C26—C27—C28 178.9 (3)
O1—C2—C3—C4 178.4 (3) O4—C27—C28—C29 179.5 (3)
C1—C2—C3—C4 0.0 (5) C26—C27—C28—C29 0.7 (5)
O1—C2—C3—C7 0.4 (5) O4—C27—C28—C32 0.6 (5)
C1—C2—C3—C7 −177.9 (3) C26—C27—C28—C32 −178.2 (3)
C2—C3—C4—C5 0.3 (5) C27—C28—C29—C30 −0.1 (5)
C7—C3—C4—C5 178.3 (3) C32—C28—C29—C30 178.8 (3)
C3—C4—C5—C6 −0.5 (6) C28—C29—C30—C31 −0.2 (5)
C3—C4—C5—C11 178.3 (4) C28—C29—C30—C36 −179.5 (4)
C4—C5—C6—C1 0.3 (5) C29—C30—C31—C26 −0.1 (5)
C11—C5—C6—C1 −178.5 (4) C36—C30—C31—C26 179.2 (4)
C2—C1—C6—C5 0.1 (5) C27—C26—C31—C30 0.7 (5)
C15—C1—C6—C5 −174.1 (3) C40—C26—C31—C30 −179.3 (3)
C4—C3—C7—C9 125.7 (4) C29—C28—C32—C33 0.8 (5)
C2—C3—C7—C9 −56.5 (5) C27—C28—C32—C33 179.7 (3)
C4—C3—C7—C10 5.3 (5) C29—C28—C32—C34 −118.6 (4)
C2—C3—C7—C10 −176.9 (3) C27—C28—C32—C34 60.3 (5)
C4—C3—C7—C8 −113.3 (4) C29—C28—C32—C35 119.8 (4)
C2—C3—C7—C8 64.6 (4) C27—C28—C32—C35 −61.3 (4)
C6—C5—C11—C14 −49.3 (5) C31—C30—C36—C37 −177.7 (4)
C4—C5—C11—C14 132.0 (4) C29—C30—C36—C37 1.5 (5)
C6—C5—C11—C13 −173.3 (4) C31—C30—C36—C38 −54.7 (5)
C4—C5—C11—C13 8.0 (6) C29—C30—C36—C38 124.6 (4)
C6—C5—C11—C12 69.2 (5) C31—C30—C36—C39 63.2 (5)
C4—C5—C11—C12 −109.5 (4) C29—C30—C36—C39 −117.5 (4)
C6—C1—C15—N1 176.7 (3) C31—C26—C40—N2 179.4 (4)
C2—C1—C15—N1 2.7 (5) C27—C26—C40—N2 −0.5 (5)
C21—C16—C17—C18 −0.6 (5) C46—C41—C42—C43 −0.3 (5)
N1—C16—C17—C18 175.7 (3) N2—C41—C42—C43 178.5 (3)
C16—C17—C18—C19 −0.6 (6) C41—C42—C43—C44 0.0 (6)
C17—C18—C19—C20 0.8 (6) C42—C43—C44—C45 −0.1 (5)
C17—C18—C19—C22 −179.6 (3) C42—C43—C44—C47 179.3 (3)
C18—C19—C20—C21 0.3 (5) C43—C44—C45—C46 0.7 (5)
C22—C19—C20—C21 −179.4 (3) C47—C44—C45—C46 −178.8 (3)
C18—C19—C20—O3 −177.9 (3) C43—C44—C45—O6 −180.0 (3)
C22—C19—C20—O3 2.5 (5) C47—C44—C45—O6 0.6 (5)
C19—C20—C21—C16 −1.5 (6) C44—C45—C46—C41 −1.0 (6)
O3—C20—C21—C16 176.8 (3) O6—C45—C46—C41 179.6 (3)
C17—C16—C21—C20 1.6 (5) C42—C41—C46—C45 0.8 (5)
N1—C16—C21—C20 −175.0 (3) N2—C41—C46—C45 −178.1 (3)
C20—C19—C22—C23 −2.7 (5) C45—C44—C47—C48 −0.6 (5)
C18—C19—C22—C23 177.6 (4) C43—C44—C47—C48 −180.0 (4)
C20—C19—C22—C25 176.6 (3) C45—C44—C47—C50 179.7 (3)
C18—C19—C22—C25 −3.1 (5) C43—C44—C47—C50 0.3 (5)
C19—C22—C23—C24 0.2 (6) C44—C47—C48—C49 −0.3 (6)
C25—C22—C23—C24 −179.1 (3) C50—C47—C48—C49 179.4 (3)
C22—C23—C24—O2 −177.2 (4) C47—C48—C49—O5 −178.6 (4)
C22—C23—C24—O3 2.6 (6) C47—C48—C49—O6 1.2 (6)
C1—C15—N1—C16 −173.4 (3) C26—C40—N2—C41 −178.4 (3)
C21—C16—N1—C15 178.4 (4) C46—C41—N2—C40 −177.2 (4)
C17—C16—N1—C15 2.0 (6) C42—C41—N2—C40 3.9 (6)
O2—C24—O3—C20 176.9 (4) O5—C49—O6—C45 178.6 (4)
C23—C24—O3—C20 −2.9 (5) C48—C49—O6—C45 −1.2 (5)
C19—C20—O3—C24 0.5 (5) C46—C45—O6—C49 179.8 (3)
C21—C20—O3—C24 −177.8 (3) C44—C45—O6—C49 0.4 (5)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C26–C31 and C1–C6 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.82 1.80 2.538 (4) 149
O4—H4A···N2 0.82 1.80 2.537 (4) 149
C25—H25B···Cg1 0.96 2.73 3.536 (4) 143
C50—H50A···Cg2i 0.96 2.80 3.571 (4) 138
C50—H50B···Cg1ii 0.96 2.91 3.569 (4) 136

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5038).

References

  1. Aazam, E. S., El Husseiny, A. F., Al-Amri, H. M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o179. [DOI] [PMC free article] [PubMed]
  2. Aazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem.6, 319–323.
  3. Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Creaven, B. S., Devereux, M., Karcz, D., Kellett, A., McCann, M., Noble, A. & Walsh, M. (2009). J. Inorg. Biochem.103, 1196–1203. [DOI] [PubMed]
  6. El Husseiny, A. F., Aazam, E. S. & Al Shehary, J. (2008). ICAIJ, 3, 64–68.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Honda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 899–901.
  10. Kachkovski, O. D., Tolmachev, O. I., Kobryn, L. O., Bila, E. E. & Ganushchak, M. I. (2004). Dyes Pigm.63, 203–211.
  11. Kulkarni, A., Patil, S. A. & Badami, P. S. (2009). Eur. J. Med. Chem., pp. 1–9. [DOI] [PubMed]
  12. Ronad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci.341, 696–700. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Stoe & Cie, (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  15. Youssef, N. S., El-Zahany, E., El-Seidy, A. M. A., Caselli, A. & Cenini, S. (2009). J. Mol. Catal. A, pp. 159–168.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036743/sj5038sup1.cif

e-66-o2587-sup1.cif (34.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036743/sj5038Isup2.hkl

e-66-o2587-Isup2.hkl (395.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES