Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2621. doi: 10.1107/S1600536810037323

2,5-Bis(4-methyl­phen­yl)-4-oxopenta­noic acid

Jun Wang a, Xiaomei Zhuang a,*, Yong Hou a
PMCID: PMC2983153  PMID: 21587595

Abstract

The title compound, C19H20O3, was obtained from 1,4-bis­(4-methyl­phen­yl)but-3-yn-2-one in the presence of carbon monoxide by Ni(CN)2 catalysis in a basic aqueous medium. Inter­molecular O—H⋯O hydrogen bonds lead to the formation of hydrogen-bonded carb­oxy­lic acid dimers [graph-set motif R 2 2(8)]. Weak C—H⋯O hydrogen bonds between neighbouring dimers further extend the structure to give rise to a three-dimensional supra­molecular network.

Related literature

For general background to transition metal-mediated carbonyl­ation reactions, see: Collins (1999); Arzoumanian et al. (1995). For a similar structure, see: Garcia-Gutierrez et al. (2004). For bond length values, see: Allen et al. (1987). For hydrogen-bonding motifs, see: Bernstein et al. (1995).graphic file with name e-66-o2621-scheme1.jpg

Experimental

Crystal data

  • C19H20O3

  • M r = 296.35

  • Monoclinic, Inline graphic

  • a = 11.846 (2) Å

  • b = 13.155 (3) Å

  • c = 11.755 (2) Å

  • β = 115.98 (3)°

  • V = 1646.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • 12947 measured reflections

  • 2956 independent reflections

  • 1474 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.173

  • S = 1.01

  • 2956 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037323/zl2309sup1.cif

e-66-o2621-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037323/zl2309Isup2.hkl

e-66-o2621-Isup2.hkl (145.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.50 3.418 (4) 169
C15—H15⋯O2ii 0.93 2.56 3.452 (4) 160
O2—H2A⋯O3iii 0.82 1.83 2.638 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported by Zhongshan Polytechnic.

supplementary crystallographic information

Comment

Transition-metal-mediated carbonylation reactions are of great research interest in recent years (Collins, 1999). Amongst the many metal-mediated syntheses used, catalysis by nickel cyanide in aqueous media under phase transfer conditions has attracted particular attention (Arzoumanian et al., 1995) and numerous lactones and their hydrolysis products have been synthesized using this system. Herein, we chose 1,4-di(4-methylbenzyl)but-3-yn-2-one as a carbonylation substrate to be reacted in the presence of Ni(CN)2 and carbon monoxide in a biphasic toluene/basic aqueous medium to give the title compound.

The structure of the title compound is depicted in Fig. 1. The C—C bond lengths show normal values (Allen et al., 1987), and the C—O and C═O bond lengths are comparable to those observed in simliar structures (Garcia-Gutierrez et al., 2004). The molecules form dimers with neighboring molecules through O—H···O hydrogen bonding with an R22(8) graph set motif (Bernstein et al., 1995). These dimers are further linked by C—H···O hydrogen bonds (Table 1) to form a three-dimensional supramolecular network (Fig. 2).

Experimental

A typical experiment was performed as follows: in a round-bottomed flask toluene (25 ml) and 1 M aqueous NaOH (10 ml) were degassed and saturated with CO under atmospheric pressure before Ni(CN)2.4H2O (1.0 mmol) and tetrabutylammonium bromide (0.3 mmol) were introduced, and the mixture was kept at room temperature overnight with stirring while CO was slowly (2–3 min) bubbled through the solution. To the yellow two-phase mixture was then added 10 mmol of 1,4-di(4-methylbenzyl)but-3-yn-2-one, and stirring and flow of CO at a flow rate of 3 ml min-1 were maintained for 5 h at 393 K. At the end of the reaction, ethyl ether (2 × 20 ml) was used to eliminate the impurities. The aqueous phase was acidified with diluted HCl at pH = 1. Ethyl ether (2 × 20 ml) was used to extract the product. The organic phase was dried over Na2SO4 and evaporated to obtain a yellow powder. During recrystallization, the yellow block crystals were obtained by slow evaporation of the solvent with a yield of 68%. m.p. 476–478 K; IR (KBr) cm-1: 3052, 2980, 2948, 1716, 1705, 1669, 1607, 1573, 1465, 1416, 1379, 1345, 1285, 1246, 1232, 1217, 1186, 1150, 1068, 1044, 995, 972, 850.

Refinement

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

ORTEP represention of atom numbering diagram for the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

View of the three-dimensional structure of the title compound. H-bonds are shown as dashed lines.

Crystal data

C19H20O3 F(000) = 632
Mr = 296.35 Dx = 1.195 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2279 reflections
a = 11.846 (2) Å θ = 2.3–28.0°
b = 13.155 (3) Å µ = 0.08 mm1
c = 11.755 (2) Å T = 293 K
β = 115.98 (3)° Block, yellow
V = 1646.7 (7) Å3 0.25 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 1474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.062
graphite θmax = 25.2°, θmin = 3.1°
φ and ω scan h = −14→14
12947 measured reflections k = −15→15
2956 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3
2956 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2848 (2) 0.06339 (18) 0.6978 (3) 0.0586 (7)
C2 0.3764 (2) 0.1318 (2) 0.7725 (3) 0.0695 (8)
H2 0.4156 0.1729 0.7360 0.083*
C3 0.4101 (3) 0.1396 (2) 0.9004 (3) 0.0772 (9)
H3 0.4722 0.1858 0.9485 0.093*
C4 0.3548 (3) 0.0817 (2) 0.9587 (3) 0.0744 (8)
C5 0.2638 (3) 0.0149 (3) 0.8837 (3) 0.0859 (9)
H5 0.2239 −0.0254 0.9201 0.103*
C6 0.2299 (3) 0.0057 (2) 0.7571 (3) 0.0758 (8)
H6 0.1680 −0.0409 0.7099 0.091*
C7 0.3949 (4) 0.0898 (3) 1.0989 (3) 0.1073 (12)
H7A 0.4565 0.1427 1.1337 0.161*
H7B 0.4304 0.0263 1.1388 0.161*
H7C 0.3232 0.1057 1.1136 0.161*
C8 0.2475 (2) 0.05361 (18) 0.5580 (2) 0.0568 (7)
H8 0.1909 −0.0049 0.5272 0.068*
C9 0.3590 (2) 0.0320 (2) 0.5332 (3) 0.0581 (7)
C10 0.1766 (2) 0.1458 (2) 0.4817 (3) 0.0654 (7)
H10A 0.1111 0.1638 0.5065 0.078*
H10B 0.2341 0.2028 0.5021 0.078*
C11 0.1187 (2) 0.1287 (2) 0.3424 (3) 0.0617 (7)
C12 0.0992 (3) 0.2191 (2) 0.2583 (3) 0.0764 (8)
H12A 0.0774 0.2768 0.2961 0.092*
H12B 0.1783 0.2348 0.2563 0.092*
C13 0.0008 (2) 0.20819 (18) 0.1251 (3) 0.0604 (7)
C14 −0.1074 (3) 0.2653 (2) 0.0815 (3) 0.0827 (9)
H14 −0.1173 0.3129 0.1349 0.099*
C15 −0.2006 (3) 0.2536 (2) −0.0386 (4) 0.0892 (10)
H15 −0.2723 0.2937 −0.0646 0.107*
C16 −0.1916 (3) 0.1845 (2) −0.1219 (3) 0.0729 (8)
C17 −0.0825 (3) 0.1291 (2) −0.0809 (3) 0.0678 (8)
H17 −0.0718 0.0832 −0.1355 0.081*
C18 0.0115 (2) 0.14094 (19) 0.0405 (3) 0.0638 (7)
H18 0.0843 0.1023 0.0659 0.077*
C19 −0.2969 (3) 0.1693 (3) −0.2526 (4) 0.1142 (13)
H19A −0.2762 0.1145 −0.2939 0.171*
H19B −0.3088 0.2305 −0.3010 0.171*
H19C −0.3729 0.1533 −0.2460 0.171*
O1 0.0871 (2) 0.04379 (15) 0.3000 (2) 0.0947 (7)
O2 0.41394 (17) −0.05500 (14) 0.5781 (2) 0.0763 (6)
H2A 0.4777 −0.0597 0.5674 0.114*
O3 0.39643 (17) 0.08983 (15) 0.4773 (2) 0.0817 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0534 (14) 0.0674 (16) 0.0574 (18) 0.0026 (11) 0.0266 (13) −0.0028 (13)
C2 0.0662 (17) 0.0777 (18) 0.065 (2) −0.0016 (13) 0.0293 (15) −0.0019 (15)
C3 0.0674 (17) 0.088 (2) 0.064 (2) 0.0083 (14) 0.0171 (16) −0.0111 (16)
C4 0.085 (2) 0.085 (2) 0.0540 (19) 0.0263 (16) 0.0306 (16) 0.0051 (16)
C5 0.105 (2) 0.097 (2) 0.073 (3) 0.0023 (18) 0.055 (2) 0.0100 (18)
C6 0.0804 (19) 0.087 (2) 0.069 (2) −0.0133 (14) 0.0415 (17) −0.0067 (16)
C7 0.132 (3) 0.126 (3) 0.060 (2) 0.048 (2) 0.039 (2) 0.010 (2)
C8 0.0558 (14) 0.0617 (14) 0.0549 (17) −0.0005 (11) 0.0262 (12) −0.0015 (12)
C9 0.0578 (15) 0.0647 (15) 0.0563 (17) 0.0003 (12) 0.0294 (13) −0.0026 (13)
C10 0.0601 (15) 0.0771 (17) 0.0588 (19) 0.0056 (12) 0.0258 (13) −0.0081 (13)
C11 0.0621 (15) 0.0671 (17) 0.0547 (18) −0.0022 (12) 0.0245 (13) −0.0054 (13)
C12 0.086 (2) 0.0749 (18) 0.064 (2) −0.0135 (14) 0.0293 (16) −0.0020 (15)
C13 0.0696 (16) 0.0574 (14) 0.0578 (18) −0.0044 (12) 0.0312 (14) 0.0008 (13)
C14 0.095 (2) 0.084 (2) 0.074 (2) 0.0215 (16) 0.0407 (19) −0.0013 (16)
C15 0.080 (2) 0.103 (2) 0.083 (3) 0.0331 (17) 0.0347 (19) 0.016 (2)
C16 0.0686 (17) 0.0887 (19) 0.060 (2) −0.0010 (15) 0.0266 (15) 0.0068 (16)
C17 0.0831 (19) 0.0671 (17) 0.058 (2) −0.0030 (14) 0.0355 (16) −0.0034 (13)
C18 0.0693 (16) 0.0627 (16) 0.064 (2) 0.0077 (12) 0.0336 (15) 0.0056 (13)
C19 0.083 (2) 0.169 (4) 0.076 (3) −0.010 (2) 0.021 (2) 0.009 (2)
O1 0.1269 (17) 0.0755 (14) 0.0615 (14) −0.0101 (12) 0.0226 (12) −0.0026 (11)
O2 0.0787 (13) 0.0734 (12) 0.0948 (17) 0.0158 (9) 0.0547 (12) 0.0179 (11)
O3 0.0835 (14) 0.0767 (12) 0.1091 (19) 0.0139 (9) 0.0646 (13) 0.0223 (12)

Geometric parameters (Å, °)

C1—C6 1.372 (4) C10—H10B 0.9700
C1—C2 1.387 (3) C11—O1 1.214 (3)
C1—C8 1.508 (4) C11—C12 1.498 (4)
C2—C3 1.380 (4) C12—C13 1.494 (4)
C2—H2 0.9300 C12—H12A 0.9700
C3—C4 1.368 (4) C12—H12B 0.9700
C3—H3 0.9300 C13—C14 1.376 (4)
C4—C5 1.371 (4) C13—C18 1.378 (4)
C4—C7 1.506 (4) C14—C15 1.367 (4)
C5—C6 1.366 (4) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.375 (4)
C6—H6 0.9300 C15—H15 0.9300
C7—H7A 0.9600 C16—C17 1.374 (4)
C7—H7B 0.9600 C16—C19 1.509 (4)
C7—H7C 0.9600 C17—C18 1.381 (4)
C8—C9 1.499 (3) C17—H17 0.9300
C8—C10 1.523 (3) C18—H18 0.9300
C8—H8 0.9800 C19—H19A 0.9600
C9—O3 1.209 (3) C19—H19B 0.9600
C9—O2 1.308 (3) C19—H19C 0.9600
C10—C11 1.489 (4) O2—H2A 0.8200
C10—H10A 0.9700
C6—C1—C2 116.8 (3) C8—C10—H10B 108.9
C6—C1—C8 121.9 (2) H10A—C10—H10B 107.7
C2—C1—C8 121.3 (3) O1—C11—C10 120.1 (3)
C3—C2—C1 120.7 (3) O1—C11—C12 121.9 (3)
C3—C2—H2 119.6 C10—C11—C12 118.0 (2)
C1—C2—H2 119.6 C13—C12—C11 116.1 (2)
C4—C3—C2 122.0 (3) C13—C12—H12A 108.3
C4—C3—H3 119.0 C11—C12—H12A 108.3
C2—C3—H3 119.0 C13—C12—H12B 108.3
C3—C4—C5 116.7 (3) C11—C12—H12B 108.3
C3—C4—C7 121.2 (3) H12A—C12—H12B 107.4
C5—C4—C7 122.1 (3) C14—C13—C18 116.5 (3)
C6—C5—C4 122.0 (3) C14—C13—C12 120.6 (3)
C6—C5—H5 119.0 C18—C13—C12 122.8 (2)
C4—C5—H5 119.0 C15—C14—C13 121.5 (3)
C5—C6—C1 121.7 (3) C15—C14—H14 119.3
C5—C6—H6 119.1 C13—C14—H14 119.3
C1—C6—H6 119.1 C14—C15—C16 122.0 (3)
C4—C7—H7A 109.5 C14—C15—H15 119.0
C4—C7—H7B 109.5 C16—C15—H15 119.0
H7A—C7—H7B 109.5 C17—C16—C15 117.1 (3)
C4—C7—H7C 109.5 C17—C16—C19 121.2 (3)
H7A—C7—H7C 109.5 C15—C16—C19 121.7 (3)
H7B—C7—H7C 109.5 C16—C17—C18 120.8 (3)
C9—C8—C1 111.4 (2) C16—C17—H17 119.6
C9—C8—C10 110.0 (2) C18—C17—H17 119.6
C1—C8—C10 113.4 (2) C13—C18—C17 122.0 (2)
C9—C8—H8 107.3 C13—C18—H18 119.0
C1—C8—H8 107.3 C17—C18—H18 119.0
C10—C8—H8 107.3 C16—C19—H19A 109.5
O3—C9—O2 122.2 (2) C16—C19—H19B 109.5
O3—C9—C8 123.4 (2) H19A—C19—H19B 109.5
O2—C9—C8 114.4 (2) C16—C19—H19C 109.5
C11—C10—C8 113.4 (2) H19A—C19—H19C 109.5
C11—C10—H10A 108.9 H19B—C19—H19C 109.5
C8—C10—H10A 108.9 C9—O2—H2A 109.5
C11—C10—H10B 108.9

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17···O1i 0.93 2.50 3.418 (4) 169
C15—H15···O2ii 0.93 2.56 3.452 (4) 160
O2—H2A···O3iii 0.82 1.83 2.638 (2) 169

Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2309).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arzoumanian, H., Nuel, D., Jean, M., Cabrera, A., Garcia, J. L. & Rosas, N. (1995). Organometallics, 14, 5438–5441.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & $ Chang, N.-L. (1995). Angew. Chem. Int. Ed.34, 1555–1573.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Collins, I. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1377–1395.
  6. Garcia-Gutierrez, J. L., Jimenez-Cruz, F. & Rosas Espinosa, N. (2004). Tetrahedron Lett.46, 803–805.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037323/zl2309sup1.cif

e-66-o2621-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037323/zl2309Isup2.hkl

e-66-o2621-Isup2.hkl (145.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES