Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2623. doi: 10.1107/S1600536810037402

β-Polymorph of phenazepam: a powder study

Gleb B Sergeev a, Boris M Sergeev a, Yurii N Morosov a, Vladimir V Chernyshev a,*
PMCID: PMC2983154  PMID: 21587597

Abstract

The title compound [systematic name: 7-bromo-5-(2-chloro­phen­yl)-1H-1,4-benzodiazepin-2(3H)-one] (β-polymorph), C15H10BrClN2O, has been obtained via cryomodification of the known α-polymorph of phenazepam [Karapetyan et al. (1979). Bioorg. Khim. 5, 1684–1690]. In both polymorphs, the mol­ecules, which differ only in the dihedral angles between the aromatic rings [75.4 (2)° and 86.2 (3)° in the α- and β-polymorphs, respectively], are linked into centrosymmetric dimers via N—H⋯O hydrogen bonds. In the crystal structure of the β-polymorph, weak inter­molecular C—H⋯O hydrogen bonds further link these dimers into layers parallel to bc plane.

Related literature

For details of the synthesis via cryomodification, see: Sergeev & Komarov (2006). For the crystal structure of the α-polymorph of phenazepam, see: Karapetyan et al. (1979). For details of the indexing algorithm, see: Werner et al. (1985). The methodology of the refinement (including applied restraints) has been described in detail by Ryabova et al. (2005). For the March–Dollase orientation correction, see: Dollase (1986) and for the split-type pseudo-Voigt profile, see: Toraya (1986). graphic file with name e-66-o2623-scheme1.jpg

Experimental

Crystal data

  • C15H10BrClN2O

  • M r = 349.61

  • Monoclinic, Inline graphic

  • a = 14.8006 (19) Å

  • b = 11.6756 (14) Å

  • c = 8.4769 (9) Å

  • β = 93.679 (17)°

  • V = 1461.8 (3) Å3

  • Z = 4

  • Cu Kα1 radiation, λ = 1.54059 Å

  • μ = 5.49 mm−1

  • T = 295 K

  • Flat sheet, 15 × 1 mm

Data collection

  • Guinier camera G670 diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Data collection mode: transmission

  • Scan method: continuous

  • min = 5.00°, 2θmax = 80.00°, 2θstep = 0.01°

Refinement

  • R p = 0.013

  • R wp = 0.017

  • R exp = 0.012

  • R Bragg = 0.059

  • χ2 = 2.250

  • 7501 data points

  • 128 parameters

  • 64 restraints

  • H-atom parameters not refined

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037402/lh5126sup1.cif

e-66-o2623-sup1.cif (14.4KB, cif)

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536810037402/lh5126Isup2.rtv

e-66-o2623-Isup2.rtv (249.5KB, rtv)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O10i 0.86 2.15 2.865 (16) 141
C11—H11B⋯O10ii 0.97 2.18 3.03 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported in part by the RFBR project 09–03-13557.

supplementary crystallographic information

Comment

Phenazepam is a benzodiazepine drug produced in Russia, which is used in the treatment of neurological disorders such as epilepsy, alcohol withdrawal syndrome and insomnia. The crystal structure of its α-polymorph has been reported by Karapetyan et al. (1979). Herewith we present the crystal structure of β-polymorph of phenazepam, which was obtained from the α-polymorph via cryomodification, i.e. through the preparation of metastable solid-phase from the vapor phase at low temperature (Sergeev & Komarov, 2006).

In β-polymorph (Fig. 1), two six-membered rings form a dihedral angle of 86.2 (3)°, while this dihedral angle is 75.4 (2)° in α-polymorph. In both polymorphs, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. In the crystal structure of β-polymorph (in spite of α-polymorph), the non-classical intermolecular C—H···O hydrogen bonds (Table 1) link further these dimers into layers parallel to bc plane.

Experimental

The title β-polymorph of phenazepam has been obtained via cryomodification of α-polymorph of phenazepam. Cryomodification was realized by vapor deposition on a cold surface in vacuo at temperatures varying from 77 to 273 K following the known procedure (Sergeev & Komarov, 2006).

Refinement

During the exposure, the specimen was spun in its plane to improve particle statistics. The triclinic unit-cell dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20=37, using the first 35 peak positions. A number of weak unindexed lines (d-spacings of most significant ones were 8.54, 8.31, 6.90, 5.25 and 5.04 Å) demonstrated that the sample contained a small amount of α-polymorph. The crystal structure of β-polymorph was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Ryabova et al., 2005). All non-H atoms were isotropically refined. H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles after the final two-phases Rietveld refinement are shown in Fig. 2. On the results of two-phases Rietveld refinement the ratio of β- and α-polymorphs in the sample was estimated as 1.000 (2) to 0.045 (2), respectively. For the α-polymorph, the atomic coordinates and displacement parameters were fixed to literature values (Karapetyan et al., 1979), so only scale factor and profile parameters were refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of β-polymorph with the atomic numbering and 50% displacement spheres.

Fig. 2.

Fig. 2.

The Rietveld plot, showing the observed and difference profiles for the sample under study. The vertical bars above the difference profile show the reflection positions for α-polymorph (bottom) and β-polymorph (top).

Crystal data

C15H10BrClN2O F(000) = 696
Mr = 349.61 Dx = 1.589 Mg m3
Monoclinic, P21/c Cu Kα1 radiation, λ = 1.54059 Å
Hall symbol: -P 2ybc µ = 5.49 mm1
a = 14.8006 (19) Å T = 295 K
b = 11.6756 (14) Å Particle morphology: no specific habit
c = 8.4769 (9) Å light grey
β = 93.679 (17)° flat sheet, 15 × 1 mm
V = 1461.8 (3) Å3 Specimen preparation: Prepared at 77 K and 6.6 10-6 kPa
Z = 4

Data collection

Guinier camera G670 diffractometer Data collection mode: transmission
Radiation source: line-focus sealed tube Scan method: continuous
Curved Germanium (111) min = 5.00°, 2θmax = 80.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera

Refinement

Refinement on Inet Profile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle 128 parameters
Rp = 0.013 64 restraints
Rwp = 0.017 0 constraints
Rexp = 0.012 H-atom parameters not refined
RBragg = 0.059 Weighting scheme based on measured s.u.'s
χ2 = 2.250 (Δ/σ)max = 0.004
7501 data points Background function: Chebyshev polynomial up to the 5th order
Excluded region(s): none Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 0.93(1).

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.77280 (15) 0.40430 (17) −0.3314 (2) 0.0470 (11)*
C2 0.8173 (12) 0.4317 (13) −0.1182 (18) 0.074 (9)*
C3 0.8911 (12) 0.3743 (12) −0.044 (2) 0.075 (8)*
H3 0.9200 0.3154 −0.0943 0.090*
C4 0.9202 (11) 0.4080 (13) 0.109 (2) 0.063 (9)*
H4 0.9684 0.3696 0.1616 0.076*
C5 0.8784 (12) 0.4986 (15) 0.1866 (18) 0.076 (8)*
C6 0.8023 (12) 0.5539 (13) 0.110 (2) 0.076 (9)*
C7 0.7727 (11) 0.5187 (16) −0.0430 (18) 0.071 (8)*
H7 0.7228 0.5540 −0.0945 0.085*
N8 0.9112 (9) 0.5266 (11) 0.3406 (13) 0.064 (6)*
H8 0.9247 0.4696 0.4020 0.077*
C9 0.9248 (12) 0.6346 (12) 0.406 (2) 0.072 (8)*
O10 0.9656 (7) 0.6458 (8) 0.5370 (13) 0.057 (5)*
C11 0.8837 (11) 0.7351 (13) 0.311 (2) 0.070 (8)*
H11A 0.8966 0.8060 0.3674 0.084*
H11B 0.9113 0.7396 0.2101 0.084*
N12 0.7856 (8) 0.7217 (10) 0.2827 (16) 0.062 (7)*
C13 0.7513 (11) 0.6468 (13) 0.1858 (19) 0.061 (8)*
C14 0.6501 (11) 0.6452 (14) 0.1602 (18) 0.071 (9)*
C15 0.6074 (12) 0.7367 (12) 0.077 (2) 0.074 (8)*
H15 0.6425 0.7953 0.0384 0.089*
C16 0.5134 (11) 0.7411 (11) 0.051 (2) 0.075 (8)*
H16 0.4864 0.8028 −0.0033 0.090*
C17 0.4600 (11) 0.6530 (13) 0.106 (2) 0.073 (9)*
H17 0.3976 0.6540 0.0834 0.087*
C18 0.5002 (12) 0.5633 (14) 0.1936 (17) 0.074 (9)*
H18 0.4646 0.5067 0.2356 0.089*
C19 0.5943 (12) 0.5595 (13) 0.2180 (16) 0.065 (8)*
Cl20 0.6428 (3) 0.4396 (4) 0.3145 (5) 0.054 (2)*

Geometric parameters (Å, °)

Br1—C2 1.910 (15) C11—N12 1.46 (2)
C2—C7 1.39 (2) C11—H11A 0.9704
C2—C3 1.40 (2) C11—H11B 0.9697
C3—C4 1.40 (2) N12—C13 1.28 (2)
C3—H3 0.9297 C13—C14 1.50 (2)
C4—C5 1.41 (2) C14—C19 1.41 (2)
C4—H4 0.9299 C14—C15 1.41 (2)
C5—N8 1.402 (19) C15—C16 1.40 (2)
C5—C6 1.42 (2) C15—H15 0.9299
C6—C7 1.41 (2) C16—C17 1.39 (2)
C6—C13 1.49 (2) C16—H16 0.9299
C7—H7 0.9301 C17—C18 1.40 (2)
N8—C9 1.389 (19) C17—H17 0.9301
N8—H8 0.8600 C18—C19 1.40 (3)
C9—O10 1.23 (2) C18—H18 0.9303
C9—C11 1.53 (2) C19—Cl20 1.751 (16)
C7—C2—C3 121.6 (14) C9—C11—H11A 109.4
C7—C2—Br1 114.3 (11) N12—C11—H11B 109.4
C3—C2—Br1 124.1 (12) C9—C11—H11B 109.4
C4—C3—C2 118.1 (15) H11A—C11—H11B 108.0
C4—C3—H3 120.9 C13—N12—C11 121.6 (14)
C2—C3—H3 121.0 N12—C13—C6 125.6 (14)
C3—C4—C5 121.7 (15) N12—C13—C14 116.8 (14)
C3—C4—H4 119.2 C6—C13—C14 117.3 (14)
C5—C4—H4 119.2 C19—C14—C15 117.4 (15)
N8—C5—C4 118.1 (15) C19—C14—C13 124.2 (14)
N8—C5—C6 122.4 (15) C15—C14—C13 118.4 (14)
C4—C5—C6 119.3 (14) C16—C15—C14 121.2 (15)
C7—C6—C5 118.7 (15) C16—C15—H15 119.4
C7—C6—C13 118.3 (15) C14—C15—H15 119.4
C5—C6—C13 123.0 (14) C17—C16—C15 120.0 (14)
C2—C7—C6 120.6 (15) C17—C16—H16 120.0
C2—C7—H7 119.7 C15—C16—H16 120.0
C6—C7—H7 119.7 C16—C17—C18 120.0 (15)
C9—N8—C5 128.2 (13) C16—C17—H17 120.0
C9—N8—H8 115.9 C18—C17—H17 120.0
C5—N8—H8 115.9 C19—C18—C17 119.4 (15)
O10—C9—N8 120.5 (13) C19—C18—H18 120.3
O10—C9—C11 123.4 (13) C17—C18—H18 120.3
N8—C9—C11 116.1 (14) C18—C19—C14 121.9 (14)
N12—C11—C9 111.1 (13) C18—C19—Cl20 118.0 (12)
N12—C11—H11A 109.4 C14—C19—Cl20 120.0 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N8—H8···O10i 0.86 2.15 2.865 (16) 141
C11—H11B···O10ii 0.97 2.18 3.03 (2) 145

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5126).

References

  1. Dollase, W. A. (1986). J. Appl. Cryst.19, 267–272.
  2. Huber (2002). G670 Imaging Plate Guinier Camera Software Huber Diffraktionstechnik GmbH. Rimsting, Germany.
  3. Karapetyan, A. A., Andrianov, V. G., Struchkov, Yu. T., Bogatskii, A. V., Andronati, S. A. & Korotenko, T. I. (1979). Bioorg. Khim.5, 1684–1690.
  4. Ryabova, S. Yu., Rastorgueva, N. A., Sonneveld, E. J., Peschar, R., Schenk, H., Tafeenko, V. A., Aslanov, L. A. & Chernyshev, V. V. (2005). Acta Cryst. B61, 192–199. [DOI] [PubMed]
  5. Sergeev, G. B. & Komarov, V. S. (2006). Mol. Cryst. Liquid Cryst.456, 107–115.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Toraya, H. (1986). J. Appl. Cryst.19, 440–447.
  9. Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst.18, 367–370.
  10. Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr.216, 5–9.
  11. Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst.25, 447–451.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037402/lh5126sup1.cif

e-66-o2623-sup1.cif (14.4KB, cif)

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536810037402/lh5126Isup2.rtv

e-66-o2623-Isup2.rtv (249.5KB, rtv)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES