Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2648. doi: 10.1107/S1600536810037785

1-(4-Fluoro­phen­yl)biguanid-1-ium chloride

Maya Tutughamiarso a, Michael Bolte b,*
PMCID: PMC2983160  PMID: 21587619

Abstract

The title compound, C8H11FN5 +·Cl, crystallized with a monoprotonated 1-(4-fluoro­phen­yl)biguanidinium cation and a chloride anion in the asymmetric unit. The biguanidium group is not planar [dihedral angle between the two CN3 groups = 52.0 (1)°] and is rotated with respect to the phenyl group [τ = 54.3 (3)°]. In the crystal, N—H⋯N hydrogen-bonded centrosymmetric dimers are connected into ribbons, which are further stabilized by N—H⋯Cl interactions, forming a three-dimensional hydrogen-bonded network.

Related literature

For related structures, see: Dalpiaz et al. (1996); Portalone et al. (2004); LeBel et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o2648-scheme1.jpg

Experimental

Crystal data

  • C8H11FN5 +·Cl

  • M r = 231.67

  • Monoclinic, Inline graphic

  • a = 6.9954 (5) Å

  • b = 9.2187 (4) Å

  • c = 16.3149 (11) Å

  • β = 91.111 (5)°

  • V = 1051.93 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.20 mm

Data collection

  • STOE IPDS II two-circle-diffractometer

  • 13661 measured reflections

  • 1966 independent reflections

  • 1605 reflections with I > 2σ(I)

  • R int = 0.135

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.095

  • S = 1.03

  • 1966 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008)and XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037785/bx2308sup1.cif

e-66-o2648-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037785/bx2308Isup2.hkl

e-66-o2648-Isup2.hkl (96.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

N8—C5 1.429 (2)
N8—C9 1.356 (2)
N9—C9 1.326 (2)
N10—C9 1.332 (2)
N10—C11 1.339 (2)
N12—C11 1.338 (3)
N13—C11 1.325 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯Cli 0.83 (2) 2.50 (2) 3.2758 (17) 156 (2)
N9—H91⋯Clii 0.88 (3) 2.47 (3) 3.3283 (18) 163 (2)
N9—H92⋯Cli 0.83 (3) 2.46 (3) 3.2358 (19) 155 (3)
N12—H121⋯Cl 0.87 (3) 2.50 (3) 3.3212 (19) 157 (2)
N12—H122⋯Cliii 0.88 (3) 2.80 (3) 3.5463 (19) 143 (2)
N13—H131⋯Cl 0.87 (3) 2.58 (3) 3.384 (2) 154 (2)
N13—H132⋯N10iv 0.87 (3) 2.35 (3) 3.177 (3) 160 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank Professor Dr E. Egert (Goethe-Universität Frankfurt, Germany) for helpful discussions.

supplementary crystallographic information

Comment

1-(4-Fluorophenyl)biguanid hydrochloride crystallized with a monoprotonated 1-(4-fluorophenyl)biguanidinium cation and a chloride anion in the asymmetric unit. The protonation occurs at the N atom (N8) attached to the phenyl ring (Fig. 1). The biguanidium group is rotated with respect to the phenyl group by the rotation angle τ = 54.3 (3)° [the angle τ is defined as: τ = |ω1 + ω2 ± π|/2, the torsion angles ω1 and ω2 being respectively C4—C5—N8—C9 and C6—C5—N8—C9 (Dalpiaz et al., 1996)]. The planes defined by N8, C9, N9, N10 atoms and by N10, C11, N12, N13 atoms enclose a dihedral angle of 52.0 (1)°. Similar C—N bond lengths lead to the conclusion that the π- electron density is delocalized over the biguanidium group (Tab. 1). Two N—H···N hydrogen bonds stabilize a centrosymmetric dimer, which is further connected to a ribbon by R12(3) N—H···Cl- interactions (Bernstein et al., 1995; Fig. 2). The sixfold coordinated Cl- anion forms another two N—H···Cl- interactions leading to a three-dimensional hydrogen-bonded network.

Experimental

Single crystals of title compound were obtained by cocrystallization of the commercially available 1-(4-fluorophenyl)biguanid hydrochloride (2.6 mg) and propylthiouracil (1.1 mg) from methanol (50 µL) at room temperature.

Refinement

All H atoms were initially located by a difference Fourier synthesis. Subsequently, H atoms bonded to aromatic C atoms were refined using a riding model, with C—H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms were freely refined.

Figures

Fig. 1.

Fig. 1.

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···Cl- interactions.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H11FN5+·Cl F(000) = 480
Mr = 231.67 Dx = 1.463 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8763 reflections
a = 6.9954 (5) Å θ = 3.3–26.0°
b = 9.2187 (4) Å µ = 0.35 mm1
c = 16.3149 (11) Å T = 173 K
β = 91.111 (5)° Block, colourless
V = 1051.93 (11) Å3 0.40 × 0.40 × 0.20 mm
Z = 4

Data collection

STOE IPDS II two-circle-diffractometer 1605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.135
graphite θmax = 25.6°, θmin = 3.3°
ω scans h = −8→8
13661 measured reflections k = −11→11
1966 independent reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
1966 reflections Δρmax = 0.22 e Å3
165 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.008 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.1564 (2) 0.20564 (19) 0.36588 (9) 0.0508 (4)
C2 1.0273 (3) 0.1954 (3) 0.42677 (13) 0.0300 (5)
C3 0.8876 (3) 0.0914 (2) 0.41942 (13) 0.0269 (4)
H3 0.8799 0.0298 0.3728 0.032*
C4 0.7580 (3) 0.0793 (2) 0.48238 (12) 0.0217 (4)
H4 0.6598 0.0083 0.4791 0.026*
C5 0.7707 (3) 0.16967 (19) 0.54979 (11) 0.0186 (4)
C6 0.9161 (3) 0.2732 (2) 0.55575 (13) 0.0240 (4)
H6 0.9266 0.3338 0.6027 0.029*
C7 1.0446 (3) 0.2868 (2) 0.49308 (15) 0.0307 (5)
H7 1.1430 0.3578 0.4957 0.037*
N8 0.6343 (2) 0.15622 (17) 0.61347 (10) 0.0210 (4)
H8 0.611 (3) 0.075 (3) 0.6328 (15) 0.021 (6)*
C9 0.5280 (3) 0.26846 (19) 0.64102 (12) 0.0184 (4)
N9 0.4158 (3) 0.2418 (2) 0.70383 (11) 0.0259 (4)
H91 0.325 (4) 0.301 (3) 0.7203 (17) 0.035 (7)*
H92 0.411 (4) 0.159 (4) 0.7249 (19) 0.043 (8)*
N10 0.5351 (2) 0.39359 (16) 0.60039 (10) 0.0212 (4)
C11 0.5124 (2) 0.5212 (2) 0.63811 (12) 0.0197 (4)
N12 0.5563 (3) 0.5444 (2) 0.71722 (11) 0.0243 (4)
H121 0.562 (4) 0.634 (3) 0.7336 (16) 0.035 (7)*
H122 0.632 (4) 0.480 (3) 0.7417 (17) 0.037 (7)*
N13 0.4489 (3) 0.63199 (19) 0.59356 (12) 0.0259 (4)
H131 0.448 (4) 0.718 (3) 0.6155 (17) 0.035 (7)*
H132 0.423 (4) 0.618 (3) 0.5418 (19) 0.036 (7)*
Cl 0.48546 (6) 0.89909 (5) 0.73525 (3) 0.02180 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0368 (8) 0.0794 (11) 0.0369 (8) −0.0062 (7) 0.0206 (6) −0.0049 (7)
C2 0.0218 (10) 0.0440 (12) 0.0245 (11) 0.0048 (9) 0.0080 (8) 0.0022 (9)
C3 0.0235 (9) 0.0357 (11) 0.0214 (10) 0.0108 (9) −0.0021 (7) −0.0060 (9)
C4 0.0184 (8) 0.0200 (9) 0.0265 (10) 0.0043 (7) −0.0029 (7) −0.0025 (8)
C5 0.0211 (9) 0.0160 (8) 0.0186 (9) 0.0053 (7) 0.0014 (7) 0.0024 (7)
C6 0.0251 (10) 0.0210 (9) 0.0259 (10) 0.0010 (8) −0.0004 (8) −0.0029 (8)
C7 0.0255 (10) 0.0304 (11) 0.0362 (12) −0.0037 (9) 0.0028 (9) 0.0013 (9)
N8 0.0296 (9) 0.0119 (7) 0.0218 (8) 0.0036 (6) 0.0079 (7) 0.0022 (7)
C9 0.0213 (9) 0.0155 (9) 0.0183 (9) 0.0025 (7) −0.0002 (7) −0.0011 (7)
N9 0.0322 (10) 0.0164 (8) 0.0295 (10) 0.0056 (7) 0.0122 (8) 0.0029 (7)
N10 0.0305 (8) 0.0148 (7) 0.0182 (8) 0.0048 (6) 0.0030 (6) 0.0008 (6)
C11 0.0180 (9) 0.0171 (9) 0.0243 (10) 0.0019 (7) 0.0045 (7) 0.0020 (7)
N12 0.0361 (10) 0.0155 (8) 0.0211 (9) 0.0034 (8) −0.0017 (7) −0.0006 (7)
N13 0.0392 (10) 0.0150 (8) 0.0234 (10) 0.0055 (7) −0.0048 (7) 0.0006 (7)
Cl 0.0265 (3) 0.0155 (2) 0.0235 (3) −0.00112 (17) 0.00391 (17) 0.00160 (17)

Geometric parameters (Å, °)

F1—C2 1.359 (2) N8—H8 0.83 (2)
C2—C3 1.373 (3) N9—C9 1.326 (2)
C2—C7 1.375 (3) N10—C9 1.332 (2)
C3—C4 1.388 (3) N9—H91 0.88 (3)
C3—H3 0.9500 N9—H92 0.83 (3)
C4—C5 1.381 (3) N10—C11 1.339 (2)
C4—H4 0.9500 N12—C11 1.338 (3)
C5—C6 1.397 (3) N13—C11 1.325 (3)
N8—C5 1.429 (2) N12—H121 0.87 (3)
C6—C7 1.380 (3) N12—H122 0.88 (3)
C6—H6 0.9500 N13—H131 0.87 (3)
C7—H7 0.9500 N13—H132 0.87 (3)
N8—C9 1.356 (2)
F1—C2—C3 117.8 (2) C9—N8—H8 116.9 (15)
F1—C2—C7 118.9 (2) C5—N8—H8 119.4 (15)
C3—C2—C7 123.26 (19) N9—C9—N10 125.00 (17)
C2—C3—C4 117.75 (19) N9—C9—N8 116.83 (17)
C2—C3—H3 121.1 N10—C9—N8 118.04 (17)
C4—C3—H3 121.1 C9—N9—H91 124.2 (17)
C5—C4—C3 120.55 (18) C9—N9—H92 121 (2)
C5—C4—H4 119.7 H91—N9—H92 113 (3)
C3—C4—H4 119.7 C9—N10—C11 121.78 (16)
C4—C5—C6 120.18 (17) N13—C11—N12 118.33 (18)
C4—C5—N8 119.54 (17) N13—C11—N10 117.81 (19)
C6—C5—N8 120.28 (17) N12—C11—N10 123.82 (17)
C7—C6—C5 119.64 (19) C11—N12—H121 117.2 (18)
C7—C6—H6 120.2 C11—N12—H122 117.0 (17)
C5—C6—H6 120.2 H121—N12—H122 118 (3)
C2—C7—C6 118.6 (2) C11—N13—H131 119.0 (19)
C2—C7—H7 120.7 C11—N13—H132 118.7 (17)
C6—C7—H7 120.7 H131—N13—H132 122 (3)
C9—N8—C5 123.55 (16)
F1—C2—C3—C4 178.81 (18) C5—C6—C7—C2 −1.1 (3)
C7—C2—C3—C4 0.2 (3) C4—C5—N8—C9 −125.8 (2)
C2—C3—C4—C5 0.1 (3) C6—C5—N8—C9 54.3 (3)
C3—C4—C5—C6 −0.9 (3) C5—N8—C9—N9 −176.00 (18)
C3—C4—C5—N8 179.33 (16) C5—N8—C9—N10 8.0 (3)
C4—C5—C6—C7 1.4 (3) N9—C9—N10—C11 34.9 (3)
N8—C5—C6—C7 −178.78 (18) N8—C9—N10—C11 −149.46 (18)
F1—C2—C7—C6 −178.25 (19) C9—N10—C11—N13 −154.64 (18)
C3—C2—C7—C6 0.3 (3) C9—N10—C11—N12 27.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N8—H8···Cli 0.83 (2) 2.50 (2) 3.2758 (17) 156 (2)
N9—H91···Clii 0.88 (3) 2.47 (3) 3.3283 (18) 163 (2)
N9—H92···Cli 0.83 (3) 2.46 (3) 3.2358 (19) 155 (3)
N12—H121···Cl 0.87 (3) 2.50 (3) 3.3212 (19) 157 (2)
N12—H122···Cliii 0.88 (3) 2.80 (3) 3.5463 (19) 143 (2)
N13—H131···Cl 0.87 (3) 2.58 (3) 3.384 (2) 154 (2)
N13—H132···N10iv 0.87 (3) 2.35 (3) 3.177 (3) 160 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2308).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Dalpiaz, A., Ferretti, V., Gilli, P. & Bertolasi, V. (1996). Acta Cryst. B52, 509–518. [DOI] [PubMed]
  3. LeBel, O., Maris, T., Duval, H. & Wuest, J. D. (2005). Can. J. Chem.83, 615–625.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  5. Portalone, G. & Colapietro, M. (2004). Acta Cryst. E60, o1165–o1166.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  8. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037785/bx2308sup1.cif

e-66-o2648-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037785/bx2308Isup2.hkl

e-66-o2648-Isup2.hkl (96.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES