Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2684. doi: 10.1107/S1600536810038390

2-Phenyl­acetic acid–3-{(E)-2-[(E)-pyridin-3-yl­methyl­idene]hydrazin-1-ylidenemeth­yl}pyridine (2/1)

Hadi D Arman a, Trupta Kaulgud a, Edward R T Tiekink b,*
PMCID: PMC2983166  PMID: 21587652

Abstract

The asymmetric unit of the title 1:2 adduct, C12H10N4·2C8H8O2, comprises a single mol­ecule of 2-phenyl­acetic acid and half a mol­ecule of 3-pyridine­aldazine; the latter is completed by crystallographic inversion symmetry. In the crystal, mol­ecules are connected into a three-component aggregate via O—H⋯N hydrogen bonds. As the carboxyl group lies above the plane through the benzene ring to which it is attached [C—C—C—C = 62.24 (17)°] and the 4-pyridine­aldazine mol­ecule is almost planar (r.m.s. deviation of the 16 non-H atoms = 0.027 Å), the overall shape of the aggregate is that of a flattened extended chair. Layers of these aggregates are connected by C—H⋯O and C—H⋯π inter­actions and stack parallel to (220).

Related literature

For related studies on co-crystal formation involving the isomeric n-pyridine­aldazines, see: Broker et al. (2008); Arman et al. (2010a ,b ).graphic file with name e-66-o2684-scheme1.jpg

Experimental

Crystal data

  • C12H10N4·2C8H8O2

  • M r = 482.53

  • Triclinic, Inline graphic

  • a = 5.511 (2) Å

  • b = 9.536 (4) Å

  • c = 12.434 (6) Å

  • α = 80.30 (2)°

  • β = 88.45 (3)°

  • γ = 76.46 (2)°

  • V = 626.1 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.52 × 0.32 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.832, T max = 1.000

  • 5606 measured reflections

  • 2849 independent reflections

  • 2578 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.130

  • S = 1.09

  • 2849 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038390/hb5648sup1.cif

e-66-o2684-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038390/hb5648Isup2.hkl

e-66-o2684-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1i 0.85 (2) 1.84 (2) 2.689 (2) 176 (2)
C8—H8⋯O2ii 0.95 2.47 3.398 (2) 166
C10—H10⋯O2iii 0.95 2.57 3.277 (2) 132
C10—H10⋯Cg1iii 0.95 2.89 3.627 (2) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

As a continuation of studies into the phenomenon of co-crystallization of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010a; Arman et al., 2010b), the co-crystallization of 2-phenylacetic acid and 3-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal, (I).

The asymmetric unit in (I) comprises a molecule of 2-phenylacetic acid, Fig. 1, and half a molecule of 3-pyridinealdazine, with the latter disposed about a centre of inversion, Fig. 2. The constituents of (I) are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate, Fig. 3. The 2-phenylacetic acid molecule is non-planar as seen in the value of the C1—C2—C3—C4 torsion angle of 62.24 (17) °. By contrast, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms from their least-squares plane being 0.027 Å. Hence, the three component aggregate has the shape of a flattened extended chair. The structure of co-crystal (I) resembles closely that with 4-pyridinealdazine (Arman et al., 2010b) but the structures are not isomorphous.

In the crystal packing, the three component aggregates pack into layers parallel to (022) being connected by C—H···O and C—H···π contacts, Fig. 4 and Table 1.

Experimental

Golden prisms of (I) were isolated from the 2:1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 3-[(1E)-[(E)-2-(pyridin-3-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma Aldrich) in tetrahydrofuran, m. pt. 370–373 K.

IR assignment (cm-1): 2923 ν(C—H); 2444 ν(O—H); 1704 ν(C=O); 1628 ν(C=N); 1498, 1455, 1410 ν(C–C aromatic); 1346, 1307 ν(C—N); 819, 746 δ(C—H).

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of 2-phenylacetic acid found in co-crystal (I) showing displacement ellipsoids at the 50% probability level

Fig. 2.

Fig. 2.

Molecular structure of 3-pyridinealdazine found in co-crystal (I) showing displacement ellipsoids at the 50% probability level. The molecule is disposed about a centre of inversion with i = 1 - x, 1 - y, -z.

Fig. 3.

Fig. 3.

The three component aggregate in (I) highlighting the extended chair conformation. The O—H···N hydrogen bonds are shown as orange dashed lines.

Fig. 4.

Fig. 4.

A view in projection down the a axis highlighting the stacking of layers in co-crystal (I) mediated by O—H···N, C—H···O and C—H···π interactions shown as orange, blue and purple dashed lines, respectively.

Crystal data

C12H10N4·2C8H8O2 Z = 1
Mr = 482.53 F(000) = 254
Triclinic, P1 Dx = 1.280 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.511 (2) Å Cell parameters from 2727 reflections
b = 9.536 (4) Å θ = 2.6–40.1°
c = 12.434 (6) Å µ = 0.09 mm1
α = 80.30 (2)° T = 98 K
β = 88.45 (3)° Prism, gold
γ = 76.46 (2)° 0.52 × 0.32 × 0.10 mm
V = 626.1 (5) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer 2849 independent reflections
Radiation source: fine-focus sealed tube 2578 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −6→7
Tmin = 0.832, Tmax = 1.000 k = −11→12
5606 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.17P] where P = (Fo2 + 2Fc2)/3
2849 reflections (Δ/σ)max = 0.001
166 parameters Δρmax = 0.24 e Å3
1 restraint Δρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4813 (2) 0.37678 (11) 0.41019 (8) 0.0306 (3)
H1o 0.616 (2) 0.346 (2) 0.3774 (15) 0.046*
O2 0.65187 (19) 0.18266 (12) 0.53456 (8) 0.0327 (3)
C1 0.4823 (3) 0.28746 (15) 0.50429 (11) 0.0244 (3)
C2 0.2466 (2) 0.33170 (15) 0.56825 (11) 0.0260 (3)
H2A 0.2104 0.4387 0.5669 0.031*
H2B 0.1059 0.3105 0.5311 0.031*
C3 0.2583 (2) 0.25628 (14) 0.68565 (11) 0.0233 (3)
C4 0.4322 (3) 0.27578 (15) 0.75870 (11) 0.0260 (3)
H4 0.5476 0.3337 0.7336 0.031*
C5 0.4367 (3) 0.21091 (16) 0.86760 (12) 0.0301 (3)
H5 0.5550 0.2247 0.9166 0.036*
C6 0.2690 (3) 0.12602 (18) 0.90514 (12) 0.0339 (3)
H6 0.2706 0.0829 0.9799 0.041*
C7 0.0988 (3) 0.10450 (18) 0.83273 (13) 0.0347 (4)
H7 −0.0142 0.0450 0.8577 0.042*
C8 0.0934 (2) 0.16981 (16) 0.72377 (12) 0.0284 (3)
H8 −0.0244 0.1551 0.6749 0.034*
N1 −0.0907 (2) 0.29342 (13) 0.30452 (10) 0.0282 (3)
N2 0.4880 (2) 0.43938 (12) 0.03906 (9) 0.0258 (3)
C9 0.0632 (3) 0.16205 (16) 0.33502 (12) 0.0296 (3)
H9 0.0136 0.0960 0.3926 0.035*
C10 0.2924 (3) 0.11778 (16) 0.28634 (12) 0.0305 (3)
H10 0.3954 0.0231 0.3097 0.037*
C11 0.3679 (3) 0.21366 (15) 0.20351 (12) 0.0276 (3)
H11 0.5233 0.1859 0.1687 0.033*
C12 0.2118 (3) 0.35235 (15) 0.17169 (11) 0.0241 (3)
C13 −0.0167 (3) 0.38574 (15) 0.22392 (11) 0.0266 (3)
H13 −0.1254 0.4788 0.2011 0.032*
C14 0.2776 (3) 0.46341 (15) 0.08762 (11) 0.0253 (3)
H14 0.1624 0.5551 0.0685 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0334 (6) 0.0296 (5) 0.0252 (5) −0.0036 (4) 0.0036 (4) −0.0007 (4)
O2 0.0301 (5) 0.0331 (6) 0.0281 (5) 0.0021 (4) 0.0024 (4) 0.0004 (4)
C1 0.0267 (6) 0.0245 (6) 0.0224 (6) −0.0067 (5) −0.0020 (5) −0.0038 (5)
C2 0.0231 (6) 0.0258 (7) 0.0265 (7) −0.0022 (5) −0.0011 (5) −0.0019 (5)
C3 0.0214 (6) 0.0223 (6) 0.0242 (7) 0.0001 (5) 0.0008 (5) −0.0054 (5)
C4 0.0254 (6) 0.0227 (6) 0.0293 (7) −0.0025 (5) −0.0006 (5) −0.0062 (5)
C5 0.0280 (7) 0.0319 (7) 0.0281 (7) 0.0025 (6) −0.0030 (5) −0.0114 (6)
C6 0.0312 (7) 0.0391 (8) 0.0242 (7) 0.0028 (6) 0.0036 (5) −0.0013 (6)
C7 0.0255 (7) 0.0376 (8) 0.0366 (8) −0.0053 (6) 0.0057 (6) 0.0019 (6)
C8 0.0212 (6) 0.0315 (7) 0.0314 (7) −0.0044 (5) −0.0010 (5) −0.0043 (6)
N1 0.0316 (6) 0.0279 (6) 0.0253 (6) −0.0074 (5) 0.0043 (5) −0.0051 (5)
N2 0.0309 (6) 0.0236 (6) 0.0229 (6) −0.0070 (5) 0.0021 (4) −0.0030 (5)
C9 0.0374 (8) 0.0241 (7) 0.0276 (7) −0.0091 (6) 0.0017 (6) −0.0029 (5)
C10 0.0354 (8) 0.0224 (7) 0.0318 (7) −0.0037 (6) 0.0017 (6) −0.0039 (6)
C11 0.0281 (7) 0.0253 (7) 0.0290 (7) −0.0039 (5) 0.0024 (5) −0.0070 (5)
C12 0.0275 (7) 0.0227 (6) 0.0224 (6) −0.0056 (5) 0.0006 (5) −0.0052 (5)
C13 0.0290 (7) 0.0242 (7) 0.0250 (7) −0.0030 (5) 0.0012 (5) −0.0042 (5)
C14 0.0280 (7) 0.0229 (6) 0.0244 (6) −0.0042 (5) −0.0005 (5) −0.0045 (5)

Geometric parameters (Å, °)

O1—C1 1.3254 (17) C7—H7 0.9500
O1—H1o 0.853 (9) C8—H8 0.9500
O2—C1 1.2120 (17) N1—C9 1.3389 (19)
C1—C2 1.516 (2) N1—C13 1.3397 (18)
C2—C3 1.5105 (19) N2—C14 1.2832 (19)
C2—H2A 0.9900 N2—N2i 1.408 (2)
C2—H2B 0.9900 C9—C10 1.391 (2)
C3—C8 1.388 (2) C9—H9 0.9500
C3—C4 1.4019 (19) C10—C11 1.381 (2)
C4—C5 1.389 (2) C10—H10 0.9500
C4—H4 0.9500 C11—C12 1.398 (2)
C5—C6 1.388 (2) C11—H11 0.9500
C5—H5 0.9500 C12—C13 1.395 (2)
C6—C7 1.390 (2) C12—C14 1.4602 (19)
C6—H6 0.9500 C13—H13 0.9500
C7—C8 1.390 (2) C14—H14 0.9500
C1—O1—H1O 107.8 (14) C8—C7—H7 119.9
O2—C1—O1 123.54 (13) C3—C8—C7 120.66 (14)
O2—C1—C2 124.48 (13) C3—C8—H8 119.7
O1—C1—C2 111.98 (12) C7—C8—H8 119.7
C3—C2—C1 114.69 (11) C9—N1—C13 117.66 (13)
C3—C2—H2A 108.6 C14—N2—N2i 111.72 (14)
C1—C2—H2A 108.6 N1—C9—C10 123.08 (13)
C3—C2—H2B 108.6 N1—C9—H9 118.5
C1—C2—H2B 108.6 C10—C9—H9 118.5
H2A—C2—H2B 107.6 C11—C10—C9 118.95 (13)
C8—C3—C4 118.88 (13) C11—C10—H10 120.5
C8—C3—C2 120.74 (12) C9—C10—H10 120.5
C4—C3—C2 120.37 (13) C10—C11—C12 118.88 (13)
C5—C4—C3 120.36 (14) C10—C11—H11 120.6
C5—C4—H4 119.8 C12—C11—H11 120.6
C3—C4—H4 119.8 C13—C12—C11 117.99 (13)
C6—C5—C4 120.29 (14) C13—C12—C14 118.80 (12)
C6—C5—H5 119.9 C11—C12—C14 123.21 (13)
C4—C5—H5 119.9 N1—C13—C12 123.42 (13)
C5—C6—C7 119.58 (14) N1—C13—H13 118.3
C5—C6—H6 120.2 C12—C13—H13 118.3
C7—C6—H6 120.2 N2—C14—C12 121.22 (13)
C6—C7—C8 120.21 (15) N2—C14—H14 119.4
C6—C7—H7 119.9 C12—C14—H14 119.4
O2—C1—C2—C3 13.2 (2) C13—N1—C9—C10 −0.6 (2)
O1—C1—C2—C3 −167.21 (12) N1—C9—C10—C11 0.8 (2)
C1—C2—C3—C8 −119.47 (14) C9—C10—C11—C12 0.3 (2)
C1—C2—C3—C4 62.24 (17) C10—C11—C12—C13 −1.5 (2)
C8—C3—C4—C5 −0.8 (2) C10—C11—C12—C14 177.93 (13)
C2—C3—C4—C5 177.55 (12) C9—N1—C13—C12 −0.7 (2)
C3—C4—C5—C6 0.0 (2) C11—C12—C13—N1 1.8 (2)
C4—C5—C6—C7 0.9 (2) C14—C12—C13—N1 −177.69 (13)
C5—C6—C7—C8 −1.2 (2) N2i—N2—C14—C12 179.76 (13)
C4—C3—C8—C7 0.5 (2) C13—C12—C14—N2 178.28 (13)
C2—C3—C8—C7 −177.80 (13) C11—C12—C14—N2 −1.1 (2)
C6—C7—C8—C3 0.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1o···N1ii 0.85 (2) 1.84 (2) 2.689 (2) 176 (2)
C8—H8···O2iii 0.95 2.47 3.398 (2) 166
C10—H10···O2iv 0.95 2.57 3.277 (2) 132
C10—H10···Cg1iv 0.95 2.89 3.627 (2) 135

Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5648).

References

  1. Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2356. [DOI] [PMC free article] [PubMed]
  2. Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2629. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  7. Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038390/hb5648sup1.cif

e-66-o2684-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038390/hb5648Isup2.hkl

e-66-o2684-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES