Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2677. doi: 10.1107/S1600536810038547

(2-Hy­droxy-7-meth­oxy­naphthalen-1-yl)(phen­yl)methanone

Atsushi Nagasawa a, Ryosuke Mitsui a, Yuichi Kato a, Akiko Okamoto a, Noriyuki Yonezawa a,*
PMCID: PMC2983170  PMID: 21587645

Abstract

In the mol­ecule of the title compound, C18H14O3, there is an intra­molecular O—H⋯O=C hydrogen bond between the carbonyl and hy­droxy groups on the naphthalene ring system. The angles between the C=O bond vector and the least-squares planes of the naphthalene ring system and the phenyl ring are 30.58 (6) and 42.82 (7)°, respectively, while the dihedral angle between the naphthalene ring system and the phenyl ring is 58.65 (5)°. In the crystal, mol­ecules are connected by pairs of inter­molecular O—H⋯O=C hydrogen bonds, forming centrosymmetric dimers.

Related literature

For closely related structures, see: Hijikata et al. (2010); Kato et al. (2010); Mitsui et al. (2009); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008).graphic file with name e-66-o2677-scheme1.jpg

Experimental

Crystal data

  • C18H14O3

  • M r = 278.29

  • Monoclinic, Inline graphic

  • a = 9.81012 (18) Å

  • b = 6.27891 (11) Å

  • c = 22.0737 (4) Å

  • β = 93.167 (1)°

  • V = 1357.59 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.40 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.586, T max = 0.754

  • 20565 measured reflections

  • 2496 independent reflections

  • 2244 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.103

  • S = 1.08

  • 2496 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038547/is2606sup1.cif

e-66-o2677-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038547/is2606Isup2.hkl

e-66-o2677-Isup2.hkl (120.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.92 (2) 1.77 (2) 2.5792 (14) 145 (2)
O1—H1⋯O3i 0.92 (2) 2.32 (2) 3.0088 (16) 132.4 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by a Sasagawa Scientific research grant from the Japan Science Society.

supplementary crystallographic information

Comment

Recently, we reported the crystal structures of several 1-aroylated 2,7-dimethoxynaphthalene homologues exemplified by 1-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2010) and 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008). Methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010). Furthermore, we also reported the crystal structure of 1-monoaroylnaphthalene derivatives having 2-oxy group exemplified by (4-chlorobenzoyl)(2-hydroxy-7-methoxynaphthalene-1-yl)metanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) and (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the crystal structure of 1-benzoyl-2-hydroxy-7-methoxynaphthalene (I). The title compound was prepared by chemoselective demethylation of 1-benzoyl-2,7-dimethoxynaphthalene with aluminium trichloride.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the intramolecular O—H···O═C hydrogen bond that forms a six-membered ring including carbonyl and hydroxy groups on the naphthalene ring is observed [O3···H1 = 1.77 (2) Å]. The conformation of these groups resembles to that of (4-chlorobenzoyl)(2-hydroxy-7-methoxynaphthalen-1-yl)metanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). The angles of C═O bond vector against the least-squares plane of the naphthalene ring (C1–C10) and benzene ring (C12–C17) are 30.58 (6) and 42.82 (7)°, respectively. The dihedral angle between the naphthalene ring (C1–C10) and benzene ring (C12–C17) is 58.65 (5)°.

In the crystal structure, the molecular packing of (I) is mainly stabilized by intermolecular hydrogen bond and van der Waals interaction. Two adjacent naphthalene rings are exactly parallel and the intermolecular O—H···O═C hydrogen bond between the hydroxy group and the carbonyl oxygen on the naphthalene ring (Fig. 2) along the c axis, is observed [O3···H1 = 2.32 (2) Å]. The oxygen atom in the methoxy group interacts with carbon atom in the methoxy group of the next molecule, i.e. two methoxy groups in the adjacent molecules interact with each other [O2···C18 = 3.060 (2) Å] along the a axis. The naphthalene rings interact with the carbonyl groups [C4···O3 = 3.036 (18) Å] along the b axis. The benzoyl groups interact with the methyl groups (C16···H18A = 2.88 Å) along the a axis.

Experimental

To a solution of 1-benzoyl-2,7-dimethoxynaphthalene (2.92 g, 10 mmol) in CH2Cl2 (100 ml) was added AlCl3 (6.65 g, 50 mmol). The reaction mixture was refluxed for 30 min giving a dark red solution, which was then poured into H2O (30 ml). The aqueous layer was extracted with CHCl3 (30 ml × 3). The combined organic layers were washed with brine (30 ml × 3), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexane to give compound (I) as yellow platelets (m.p. 371.8–372.3 K, yield 1.45 g, 52%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 11.64 (s, 1H), 7.85 (d, 1H), 7.64–7.60 (m, 3H), 7.55 (tt, 1H), 7.43 (t, 2H) 7.08 (d, 1H), 6.89 (dd, 1H), 6.59 (d, 1H), 3.27 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 200.8, 162.8, 158.2, 140.8, 136.5, 134.1, 132.3, 130.1, 129.14, 128.8, 123.7, 116.5, 115.9, 113.7, 106.5, 54.5; IR (KBr): 3446, 1617, 1572, 1511, 1200; HRMS (m/z): [M + H]+ calcd for C18H15O3, 279.1021; found, 279.0999.

Refinement

All the H-atoms could be located in difference Fourier maps. The OH hydrogen atom was freely refined: O1—H1 = 0.92 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of compound (I), showing 50% probability displacement ellipsoids. The dashed line indicates an intramolecular O—H···O hydrogen bond.

Fig. 2.

Fig. 2.

A partial crystal packing diagram of compound (I), viewed down the b axis. The dashed lines indicate intra- and intermolecular O—H···O hydrogen bonds.

Crystal data

C18H14O3 F(000) = 584
Mr = 278.29 Dx = 1.362 Mg m3
Monoclinic, P21/c Melting point = 371.8–372.3 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54187 Å
a = 9.81012 (18) Å Cell parameters from 19252 reflections
b = 6.27891 (11) Å θ = 4.0–68.2°
c = 22.0737 (4) Å µ = 0.75 mm1
β = 93.167 (1)° T = 193 K
V = 1357.59 (4) Å3 Block, yellow
Z = 4 0.60 × 0.40 × 0.40 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2496 independent reflections
Radiation source: rotating anode 2244 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 4.0°
ω scans h = −11→11
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −7→7
Tmin = 0.586, Tmax = 0.754 l = −26→26
20565 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3346P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2496 reflections Δρmax = 0.23 e Å3
196 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0146 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.37752 (10) 0.17334 (19) 0.46905 (5) 0.0478 (3)
O2 0.84529 (10) −0.02213 (17) 0.22739 (4) 0.0442 (3)
O3 0.57091 (10) 0.44133 (17) 0.45195 (5) 0.0482 (3)
C1 0.55482 (12) 0.1185 (2) 0.39823 (5) 0.0336 (3)
C2 0.43388 (13) 0.0609 (2) 0.42511 (6) 0.0387 (3)
C3 0.36518 (14) −0.1302 (3) 0.40877 (7) 0.0451 (4)
H3 0.2846 −0.1684 0.4281 0.054*
C4 0.41359 (14) −0.2593 (2) 0.36562 (7) 0.0431 (3)
H4 0.3685 −0.3902 0.3564 0.052*
C5 0.53019 (13) −0.2030 (2) 0.33398 (6) 0.0363 (3)
C6 0.57599 (14) −0.3323 (2) 0.28681 (6) 0.0407 (3)
H6 0.5321 −0.4647 0.2784 0.049*
C7 0.68125 (14) −0.2718 (2) 0.25323 (6) 0.0401 (3)
H7 0.7113 −0.3612 0.2219 0.048*
C8 0.74557 (13) −0.0737 (2) 0.26554 (6) 0.0356 (3)
C9 0.70639 (13) 0.0537 (2) 0.31195 (6) 0.0335 (3)
H9 0.7512 0.1860 0.3194 0.040*
C10 0.59982 (12) −0.0095 (2) 0.34895 (5) 0.0322 (3)
C11 0.63086 (13) 0.3022 (2) 0.42425 (5) 0.0341 (3)
C12 0.78243 (13) 0.3247 (2) 0.42242 (5) 0.0327 (3)
C13 0.87010 (14) 0.1539 (2) 0.43450 (6) 0.0383 (3)
H13 0.8342 0.0163 0.4417 0.046*
C14 1.01009 (14) 0.1857 (2) 0.43590 (7) 0.0443 (4)
H14 1.0701 0.0698 0.4448 0.053*
C15 1.06297 (14) 0.3852 (3) 0.42446 (7) 0.0469 (4)
H15 1.1590 0.4054 0.4246 0.056*
C16 0.97576 (15) 0.5548 (2) 0.41281 (7) 0.0456 (4)
H16 1.0119 0.6917 0.4049 0.055*
C17 0.83608 (14) 0.5257 (2) 0.41259 (6) 0.0392 (3)
H17 0.7766 0.6437 0.4057 0.047*
C18 0.92146 (16) 0.1669 (3) 0.24071 (8) 0.0527 (4)
H18A 0.9894 0.1867 0.2103 0.063*
H18B 0.9679 0.1545 0.2810 0.063*
H18C 0.8595 0.2894 0.2400 0.063*
H1 0.428 (2) 0.296 (4) 0.4744 (11) 0.092 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0369 (5) 0.0601 (7) 0.0471 (6) 0.0032 (5) 0.0080 (4) −0.0043 (5)
O2 0.0435 (5) 0.0478 (6) 0.0420 (5) 0.0003 (4) 0.0081 (4) −0.0093 (4)
O3 0.0490 (6) 0.0453 (6) 0.0514 (6) 0.0042 (5) 0.0132 (5) −0.0117 (5)
C1 0.0324 (6) 0.0356 (7) 0.0322 (6) 0.0041 (5) −0.0032 (5) 0.0025 (5)
C2 0.0322 (6) 0.0468 (8) 0.0367 (7) 0.0046 (6) −0.0011 (5) 0.0032 (6)
C3 0.0328 (7) 0.0543 (9) 0.0480 (8) −0.0039 (6) 0.0004 (6) 0.0071 (7)
C4 0.0377 (7) 0.0415 (8) 0.0489 (8) −0.0063 (6) −0.0083 (6) 0.0064 (6)
C5 0.0349 (6) 0.0344 (7) 0.0384 (7) 0.0014 (5) −0.0089 (5) 0.0028 (5)
C6 0.0409 (7) 0.0329 (7) 0.0466 (8) −0.0003 (6) −0.0116 (6) −0.0035 (6)
C7 0.0422 (7) 0.0368 (7) 0.0402 (7) 0.0069 (6) −0.0075 (6) −0.0092 (6)
C8 0.0334 (6) 0.0389 (7) 0.0340 (6) 0.0055 (5) −0.0030 (5) −0.0017 (5)
C9 0.0340 (6) 0.0319 (7) 0.0340 (6) 0.0009 (5) −0.0038 (5) −0.0022 (5)
C10 0.0309 (6) 0.0327 (7) 0.0322 (6) 0.0041 (5) −0.0061 (5) 0.0021 (5)
C11 0.0396 (7) 0.0343 (7) 0.0286 (6) 0.0055 (5) 0.0023 (5) 0.0011 (5)
C12 0.0376 (7) 0.0337 (7) 0.0265 (6) 0.0011 (5) −0.0024 (5) −0.0046 (5)
C13 0.0421 (7) 0.0337 (7) 0.0385 (7) 0.0010 (6) −0.0040 (5) −0.0017 (6)
C14 0.0406 (7) 0.0465 (8) 0.0449 (8) 0.0083 (6) −0.0063 (6) −0.0019 (6)
C15 0.0367 (7) 0.0582 (9) 0.0454 (8) −0.0040 (7) −0.0014 (6) −0.0033 (7)
C16 0.0480 (8) 0.0428 (8) 0.0457 (8) −0.0097 (6) 0.0001 (6) 0.0011 (6)
C17 0.0458 (8) 0.0333 (7) 0.0381 (7) 0.0025 (6) −0.0031 (6) −0.0023 (6)
C18 0.0512 (9) 0.0552 (10) 0.0531 (9) −0.0099 (7) 0.0163 (7) −0.0085 (7)

Geometric parameters (Å, °)

O1—C2 1.3434 (17) C8—C9 1.3716 (18)
O1—H1 0.92 (2) C9—C10 1.4184 (18)
O2—C8 1.3646 (16) C9—H9 0.9500
O2—C18 1.4244 (18) C11—C12 1.4964 (18)
O3—C11 1.2340 (16) C12—C17 1.3895 (19)
C1—C2 1.4029 (18) C12—C13 1.3908 (18)
C1—C10 1.4414 (18) C13—C14 1.386 (2)
C1—C11 1.4728 (18) C13—H13 0.9500
C2—C3 1.413 (2) C14—C15 1.384 (2)
C3—C4 1.357 (2) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.381 (2)
C4—C5 1.418 (2) C15—H15 0.9500
C4—H4 0.9500 C16—C17 1.382 (2)
C5—C6 1.413 (2) C16—H16 0.9500
C5—C10 1.4233 (18) C17—H17 0.9500
C6—C7 1.358 (2) C18—H18A 0.9800
C6—H6 0.9500 C18—H18B 0.9800
C7—C8 1.4138 (19) C18—H18C 0.9800
C7—H7 0.9500
C2—O1—H1 107.2 (15) C9—C10—C1 123.00 (12)
C8—O2—C18 117.15 (11) C5—C10—C1 119.21 (11)
C2—C1—C10 118.47 (12) O3—C11—C1 120.18 (12)
C2—C1—C11 117.33 (12) O3—C11—C12 116.62 (12)
C10—C1—C11 124.15 (11) C1—C11—C12 123.10 (11)
O1—C2—C1 124.13 (13) C17—C12—C13 119.65 (12)
O1—C2—C3 114.90 (12) C17—C12—C11 118.39 (11)
C1—C2—C3 120.91 (13) C13—C12—C11 121.80 (12)
C4—C3—C2 120.41 (13) C14—C13—C12 119.65 (13)
C4—C3—H3 119.8 C14—C13—H13 120.2
C2—C3—H3 119.8 C12—C13—H13 120.2
C3—C4—C5 121.32 (13) C15—C14—C13 120.45 (13)
C3—C4—H4 119.3 C15—C14—H14 119.8
C5—C4—H4 119.3 C13—C14—H14 119.8
C6—C5—C4 121.16 (13) C16—C15—C14 119.80 (13)
C6—C5—C10 119.56 (12) C16—C15—H15 120.1
C4—C5—C10 119.26 (13) C14—C15—H15 120.1
C7—C6—C5 121.57 (13) C15—C16—C17 120.20 (14)
C7—C6—H6 119.2 C15—C16—H16 119.9
C5—C6—H6 119.2 C17—C16—H16 119.9
C6—C7—C8 119.07 (13) C16—C17—C12 120.21 (13)
C6—C7—H7 120.5 C16—C17—H17 119.9
C8—C7—H7 120.5 C12—C17—H17 119.9
O2—C8—C9 124.22 (12) O2—C18—H18A 109.5
O2—C8—C7 114.70 (12) O2—C18—H18B 109.5
C9—C8—C7 121.07 (12) H18A—C18—H18B 109.5
C8—C9—C10 120.84 (12) O2—C18—H18C 109.5
C8—C9—H9 119.6 H18A—C18—H18C 109.5
C10—C9—H9 119.6 H18B—C18—H18C 109.5
C9—C10—C5 117.70 (12)
C10—C1—C2—O1 −176.30 (12) C6—C5—C10—C1 −178.29 (11)
C11—C1—C2—O1 6.22 (19) C4—C5—C10—C1 3.48 (18)
C10—C1—C2—C3 6.53 (19) C2—C1—C10—C9 168.90 (12)
C11—C1—C2—C3 −170.95 (12) C11—C1—C10—C9 −13.80 (19)
O1—C2—C3—C4 −178.91 (13) C2—C1—C10—C5 −7.45 (17)
C1—C2—C3—C4 −1.5 (2) C11—C1—C10—C5 169.85 (11)
C2—C3—C4—C5 −2.7 (2) C2—C1—C11—O3 −25.19 (18)
C3—C4—C5—C6 −176.55 (13) C10—C1—C11—O3 157.48 (12)
C3—C4—C5—C10 1.7 (2) C2—C1—C11—C12 150.82 (12)
C4—C5—C6—C7 175.00 (13) C10—C1—C11—C12 −26.50 (18)
C10—C5—C6—C7 −3.20 (19) O3—C11—C12—C17 −42.07 (17)
C5—C6—C7—C8 −0.6 (2) C1—C11—C12—C17 141.79 (12)
C18—O2—C8—C9 6.22 (19) O3—C11—C12—C13 133.31 (13)
C18—O2—C8—C7 −174.85 (12) C1—C11—C12—C13 −42.84 (18)
C6—C7—C8—O2 −176.72 (12) C17—C12—C13—C14 −0.74 (19)
C6—C7—C8—C9 2.25 (19) C11—C12—C13—C14 −176.06 (12)
O2—C8—C9—C10 178.76 (11) C12—C13—C14—C15 −1.0 (2)
C7—C8—C9—C10 −0.11 (19) C13—C14—C15—C16 1.4 (2)
C8—C9—C10—C5 −3.58 (18) C14—C15—C16—C17 0.0 (2)
C8—C9—C10—C1 −179.98 (11) C15—C16—C17—C12 −1.8 (2)
C6—C5—C10—C9 5.17 (17) C13—C12—C17—C16 2.1 (2)
C4—C5—C10—C9 −173.06 (12) C11—C12—C17—C16 177.61 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 0.92 (2) 1.77 (2) 2.5792 (14) 145 (2)
O1—H1···O3i 0.92 (2) 2.32 (2) 3.0088 (16) 132.4 (18)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2606).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554. [DOI] [PMC free article] [PubMed]
  5. Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. [DOI] [PMC free article] [PubMed]
  6. Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [DOI] [PMC free article] [PubMed]
  7. Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [DOI] [PMC free article] [PubMed]
  8. Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. [DOI] [PMC free article] [PubMed]
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038547/is2606sup1.cif

e-66-o2677-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038547/is2606Isup2.hkl

e-66-o2677-Isup2.hkl (120.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES