Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2629. doi: 10.1107/S1600536810037694

2-Phenyl­acetic acid–(E,E)-4,4’-(hydra­zinediylidene)dipyridine (2/1)

Hadi D Arman a, Trupta Kaulgud a, Edward R T Tiekink b,*
PMCID: PMC2983171  PMID: 21587602

Abstract

The asymmetric unit of the title co-crystal, C12H10N4·2C8H8O2, comprises a single mol­ecule of 2-phenyl­acetic acid and half a mol­ecule of 4-pyridine­aldazine as this is situated about a centre of inversion. Mol­ecules are connected into a three component aggregate via O—H⋯N hydrogen bonds. As the carb­oxy­lic acid group is almost normal to the plane through the benzene ring to which it is attached [C—C—C—C = 93.7 (3) °], and the 4-pyridine­aldazine mol­ecule is planar (r.m.s. deviation of the 16 non-H atoms = 0.010 Å), the overall shape of the aggregate is that of an extended chair. In the crystal packing, layers of three component aggregates stack along the c axis.

Related literature

For related studies on co-crystal formation involving the isomeric n-pyridine­aldazines, see: Broker et al. (2008); Arman et al. (2010).graphic file with name e-66-o2629-scheme1.jpg

Experimental

Crystal data

  • C12H10N4·2C8H8O2

  • M r = 482.53

  • Monoclinic, Inline graphic

  • a = 11.677 (7) Å

  • b = 4.425 (2) Å

  • c = 23.587 (13) Å

  • β = 95.475 (8)°

  • V = 1213.2 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.40 × 0.16 × 0.05 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer

  • 5399 measured reflections

  • 2117 independent reflections

  • 1735 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.152

  • S = 1.14

  • 2117 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037694/om2363sup1.cif

e-66-o2629-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037694/om2363Isup2.hkl

e-66-o2629-Isup2.hkl (102KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.96 (4) 1.70 (4) 2.653 (3) 175 (3)

supplementary crystallographic information

Comment

As a continuation of studies into the phenomenon of co-crystallization of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010), the co-crystallization of 2-phenylacetic acid and 4-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal.

The asymmetric unit comprises a molecule of 2-phenylacetic acid and half a molecule of 4-pyridinealdazine, with the latter disposed about a centre of inversion. The constituents are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate, Fig. 1. The 2-phenylacetic acid molecule is non-planar as seen in the value of the C12–C7–C13—C14 torsion angle of 93.7 (3) °. By contrast, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms being 0.010 Å. Hence, the three component aggregate has the shape of an extended chair, Fig. 1.

In the crystal packing, the three component aggregates pack into layers that stack along the c axis, Fig. 2. There are no specific additional intermolecular interactions of note.

Experimental

Yellow crystals of (I) were isolated from the 2/1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1- ylidene]methyl]pyridine (Sigma Aldrich) in ethanol, m.p. 395–397 K. IR assignment (cm-1): 2923 (ν C—H); 2428 (ν O—H); 1693 (ν C═O); 1602 (ν C═N); 1492,1453, 1409 (ν C–C (aromatic)); 1306 (ν C—N); 817, 716 (δ C—H).

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The three component aggregate in the 2:1 co-crystal formed between 2-phenylacetic acid and 4-pyridinealdazine showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. Unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, -z. The view highlights the extended chair conformation and the O—H···N hydrogen bonds (shown as orange dashed lines).

Fig. 2.

Fig. 2.

A view in projection down the a axis showing the stacking of layers of three component aggregates along c. The O—H···N hydrogen bonds are shown as orange dashed lines.

Crystal data

C12H10N4·2C8H8O2 F(000) = 508
Mr = 482.53 Dx = 1.321 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4281 reflections
a = 11.677 (7) Å θ = 2.4–40.2°
b = 4.425 (2) Å µ = 0.09 mm1
c = 23.587 (13) Å T = 98 K
β = 95.475 (8)° Plate, yellow
V = 1213.2 (11) Å3 0.40 × 0.16 × 0.05 mm
Z = 2

Data collection

Rigaku AFC12K/SATURN724 diffractometer 1735 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
graphite θmax = 25.0°, θmin = 2.4°
ω scans h = −13→13
5399 measured reflections k = −5→4
2117 independent reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.7865P] where P = (Fo2 + 2Fc2)/3
2117 reflections (Δ/σ)max = 0.001
166 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.18146 (19) 1.2809 (5) 0.09616 (10) 0.0316 (6)
N2 0.4766 (2) 0.6025 (5) 0.01894 (9) 0.0310 (5)
C1 0.1394 (3) 1.1780 (6) 0.04489 (13) 0.0361 (7)
H1 0.0651 1.2424 0.0298 0.043*
C2 0.2001 (2) 0.9811 (6) 0.01301 (12) 0.0321 (6)
H2 0.1668 0.9083 −0.0227 0.038*
C3 0.3098 (2) 0.8921 (6) 0.03387 (11) 0.0269 (6)
C4 0.3540 (2) 1.0017 (6) 0.08676 (12) 0.0303 (6)
H4 0.4290 0.9457 0.1024 0.036*
C5 0.2874 (2) 1.1929 (6) 0.11616 (12) 0.0305 (6)
H5 0.3183 1.2657 0.1523 0.037*
C6 0.3752 (2) 0.6842 (6) 0.00068 (11) 0.0291 (6)
H6 0.3414 0.6098 −0.0348 0.035*
O1 0.05896 (17) 1.6320 (5) 0.15872 (9) 0.0411 (6)
H1o 0.099 (3) 1.503 (8) 0.1346 (15) 0.062*
O2 −0.07727 (18) 1.5893 (5) 0.08618 (9) 0.0463 (6)
C7 −0.2197 (2) 1.6934 (6) 0.18430 (11) 0.0291 (6)
C8 −0.3183 (2) 1.6647 (6) 0.14658 (11) 0.0301 (6)
H8 −0.3235 1.7709 0.1114 0.036*
C9 −0.4091 (2) 1.4834 (6) 0.15960 (12) 0.0345 (7)
H9 −0.4755 1.4651 0.1333 0.041*
C10 −0.4032 (3) 1.3282 (6) 0.21105 (13) 0.0393 (7)
H10 −0.4653 1.2043 0.2201 0.047*
C11 −0.3063 (3) 1.3562 (6) 0.24861 (13) 0.0417 (8)
H11 −0.3017 1.2502 0.2838 0.050*
C12 −0.2149 (3) 1.5378 (6) 0.23580 (12) 0.0368 (7)
H12 −0.1488 1.5557 0.2624 0.044*
C13 −0.1189 (2) 1.8779 (6) 0.16826 (13) 0.0358 (7)
H13A −0.0727 1.9483 0.2032 0.043*
H13B −0.1471 2.0576 0.1462 0.043*
C14 −0.0443 (2) 1.6869 (6) 0.13282 (12) 0.0325 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0300 (13) 0.0327 (12) 0.0328 (13) 0.0018 (10) 0.0066 (11) −0.0014 (10)
N2 0.0320 (13) 0.0324 (12) 0.0296 (13) 0.0028 (10) 0.0081 (10) −0.0008 (10)
C1 0.0324 (16) 0.0392 (15) 0.0366 (17) 0.0032 (13) 0.0027 (13) −0.0021 (13)
C2 0.0295 (15) 0.0381 (15) 0.0284 (15) 0.0013 (12) 0.0017 (12) −0.0028 (12)
C3 0.0288 (14) 0.0262 (13) 0.0265 (14) −0.0012 (11) 0.0071 (12) 0.0009 (11)
C4 0.0300 (15) 0.0309 (14) 0.0303 (15) 0.0026 (11) 0.0037 (12) 0.0007 (12)
C5 0.0323 (16) 0.0342 (14) 0.0258 (14) 0.0001 (12) 0.0061 (12) 0.0016 (12)
C6 0.0334 (16) 0.0290 (13) 0.0252 (14) −0.0010 (12) 0.0046 (12) 0.0013 (11)
O1 0.0295 (11) 0.0523 (13) 0.0409 (12) 0.0074 (9) 0.0006 (9) −0.0177 (10)
O2 0.0408 (13) 0.0626 (14) 0.0345 (12) 0.0149 (11) −0.0011 (10) −0.0111 (11)
C7 0.0319 (15) 0.0282 (13) 0.0279 (14) 0.0070 (11) 0.0066 (12) −0.0058 (11)
C8 0.0347 (16) 0.0308 (14) 0.0251 (14) 0.0036 (12) 0.0038 (12) −0.0017 (11)
C9 0.0326 (16) 0.0350 (14) 0.0363 (17) 0.0025 (12) 0.0054 (13) −0.0028 (13)
C10 0.0455 (19) 0.0337 (15) 0.0418 (18) 0.0001 (13) 0.0197 (15) −0.0055 (13)
C11 0.062 (2) 0.0369 (16) 0.0276 (16) 0.0122 (15) 0.0146 (15) 0.0034 (13)
C12 0.0443 (18) 0.0388 (15) 0.0265 (15) 0.0119 (13) −0.0004 (13) −0.0066 (12)
C13 0.0316 (16) 0.0351 (15) 0.0413 (18) 0.0018 (12) 0.0071 (13) −0.0111 (13)
C14 0.0330 (16) 0.0330 (14) 0.0318 (16) −0.0003 (12) 0.0054 (13) 0.0003 (12)

Geometric parameters (Å, °)

N1—C5 1.339 (3) O2—C14 1.210 (3)
N1—C1 1.341 (4) C7—C8 1.392 (4)
N2—C6 1.273 (3) C7—C12 1.393 (4)
N2—N2i 1.419 (4) C7—C13 1.510 (4)
C1—C2 1.389 (4) C8—C9 1.387 (4)
C1—H1 0.9500 C8—H8 0.9500
C2—C3 1.385 (4) C9—C10 1.390 (4)
C2—H2 0.9500 C9—H9 0.9500
C3—C4 1.391 (4) C10—C11 1.374 (4)
C3—C6 1.468 (4) C10—H10 0.9500
C4—C5 1.380 (4) C11—C12 1.392 (4)
C4—H4 0.9500 C11—H11 0.9500
C5—H5 0.9500 C12—H12 0.9500
C6—H6 0.9500 C13—C14 1.520 (4)
O1—C14 1.321 (3) C13—H13A 0.9900
O1—H1o 0.96 (4) C13—H13B 0.9900
C5—N1—C1 117.7 (2) C9—C8—C7 120.9 (3)
C6—N2—N2i 111.7 (3) C9—C8—H8 119.5
N1—C1—C2 122.6 (3) C7—C8—H8 119.5
N1—C1—H1 118.7 C8—C9—C10 120.3 (3)
C2—C1—H1 118.7 C8—C9—H9 119.9
C3—C2—C1 119.3 (3) C10—C9—H9 119.9
C3—C2—H2 120.4 C11—C10—C9 119.2 (3)
C1—C2—H2 120.4 C11—C10—H10 120.4
C2—C3—C4 118.1 (2) C9—C10—H10 120.4
C2—C3—C6 119.9 (2) C10—C11—C12 120.9 (3)
C4—C3—C6 122.0 (2) C10—C11—H11 119.6
C5—C4—C3 119.1 (3) C12—C11—H11 119.6
C5—C4—H4 120.5 C11—C12—C7 120.4 (3)
C3—C4—H4 120.5 C11—C12—H12 119.8
N1—C5—C4 123.2 (3) C7—C12—H12 119.8
N1—C5—H5 118.4 C7—C13—C14 109.8 (2)
C4—C5—H5 118.4 C7—C13—H13A 109.7
N2—C6—C3 120.8 (2) C14—C13—H13A 109.7
N2—C6—H6 119.6 C7—C13—H13B 109.7
C3—C6—H6 119.6 C14—C13—H13B 109.7
C14—O1—H1O 108 (2) H13A—C13—H13B 108.2
C8—C7—C12 118.3 (3) O2—C14—O1 123.5 (3)
C8—C7—C13 120.4 (3) O2—C14—C13 123.3 (3)
C12—C7—C13 121.2 (3) O1—C14—C13 113.2 (2)
C5—N1—C1—C2 1.5 (4) C13—C7—C8—C9 176.6 (2)
N1—C1—C2—C3 −1.8 (4) C7—C8—C9—C10 0.5 (4)
C1—C2—C3—C4 0.9 (4) C8—C9—C10—C11 −0.2 (4)
C1—C2—C3—C6 −180.0 (2) C9—C10—C11—C12 0.2 (4)
C2—C3—C4—C5 0.1 (4) C10—C11—C12—C7 −0.4 (4)
C6—C3—C4—C5 −179.0 (2) C8—C7—C12—C11 0.6 (4)
C1—N1—C5—C4 −0.4 (4) C13—C7—C12—C11 −176.6 (2)
C3—C4—C5—N1 −0.3 (4) C8—C7—C13—C14 −83.5 (3)
N2i—N2—C6—C3 178.9 (2) C12—C7—C13—C14 93.7 (3)
C2—C3—C6—N2 179.3 (2) C7—C13—C14—O2 64.5 (4)
C4—C3—C6—N2 −1.7 (4) C7—C13—C14—O1 −113.9 (3)
C12—C7—C8—C9 −0.7 (4)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···N1 0.96 (4) 1.70 (4) 2.653 (3) 175 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2363).

References

  1. Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2356. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  4. Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037694/om2363sup1.cif

e-66-o2629-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037694/om2363Isup2.hkl

e-66-o2629-Isup2.hkl (102KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES