Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 18;66(Pt 10):o2578. doi: 10.1107/S160053681003655X

Piperazine-1,4-diium bis­(2-carb­oxy-1H-pyrazole-4-carboxyl­ate) tetra­hydrate

Xin-Hui Zhou a,*
PMCID: PMC2983173  PMID: 21587560

Abstract

The asymmetric unit of the title compound, C4H12N2 2+·2C5H3N2O4 ·4H2O, comprises one-half of a piperazine-1,4-diium cation, which lies on an inversion centre, a 2-carb­oxy-1H-pyrazole-4-carboxyl­ate anion and two water mol­ecules. An extensive network of inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds between the cations, anions and water mol­ecules leads to a three-dimensional supra­molecular framework.

Related literature

For 3,5-pyrazole­dicarb­oxy­lic acid, see: King et al. (2003); Pan et al. (2001). For reference structural data, see: Li & Su (2007); Reviriego et al. (2006).graphic file with name e-66-o2578-scheme1.jpg

Experimental

Crystal data

  • C4H12N2·2C5H3N2O4·4H2O

  • M r = 470.41

  • Monoclinic, Inline graphic

  • a = 8.3363 (13) Å

  • b = 16.246 (3) Å

  • c = 7.3930 (11) Å

  • β = 90.812 (3)°

  • V = 1001.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 291 K

  • 0.15 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.980, T max = 0.984

  • 5265 measured reflections

  • 1946 independent reflections

  • 1524 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.147

  • S = 1.10

  • 1946 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003655X/om2361sup1.cif

e-66-o2578-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003655X/om2361Isup2.hkl

e-66-o2578-Isup2.hkl (95.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.84 (3) 1.93 (3) 2.746 (3) 167 (3)
O2—H2⋯O4ii 0.87 (3) 1.65 (3) 2.520 (2) 175 (3)
N3—H3A⋯O4 0.88 (3) 2.36 (3) 2.918 (3) 121 (2)
N3—H3A⋯N2 0.88 (3) 2.01 (3) 2.865 (3) 162 (3)
N3—H3B⋯O3iii 0.88 (3) 2.20 (3) 2.999 (3) 150 (3)
O5—H5B⋯O6 0.85 (4) 2.00 (4) 2.831 (3) 166 (3)
O5—H5A⋯O6iv 0.92 (4) 1.96 (4) 2.833 (3) 157 (3)
O6—H6C⋯O3v 0.93 (3) 1.85 (3) 2.779 (3) 173 (3)
O6—H6D⋯O3vi 0.76 (3) 2.14 (3) 2.858 (3) 158 (4)
C6—H6B⋯O5vii 0.97 2.53 3.348 (4) 142
C7—H7A⋯O1viii 0.97 2.53 3.091 (3) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This research was supported financially by Nanjing University of Posts and Telecommunications (grant No. NY209032).

supplementary crystallographic information

Comment

Hydrogen bonding, as the strongest and most directional intermolecular force, has been intensively investigated in organic crystalline solids. The ligand, 3,5-pyrazoledicarboxylic acid, known both as a multiple proton donor and acceptor, has six potential hydrogen-bond sites involving both the nitrogen atoms of the pyrazole ring and all of the carboxylate O atoms. and it can form mono-, di- and trianionic ligand species through deprotonation (King et al. 2003; Pan et al. 2001).

We report here the synthesis and structure of piperazine-1,4-diium bis(2-carboxy-1H-pyrazole-4-carboxylate) tetrahydrate, as shown in Fig.1, which was obtained from a solution of 3,5-pyrazoledicarboxylic acid, Cd(NO3)2.4H2O and piperazine. Bond distances and angles are normal (Li & Su, 2007; Reviriego et al. 2006). The asymmetric unit of the title compound comprises one half of the piperazine-1,4-diium cation, which lies about an inversion centre, a 2-carboxy-1H-pyrazole-4-carboxylate anion and two water molecules. In the crystal structure molecules are interlinked by hydrogen bonds (Table 1 and Fig. 2). The 2-carboxy-1H-pyrazole-4-carboxylate anoins are interconnected with each other through the O2—H2···O4iii hydrogen bonds. The 2-carboxy-1H-pyrazole-4-carboxylate anions are connected with the piperazine-1,4-diium cations through the N3—H3A···O4, N3—H3A···N2, N3—H3B···O3iv and C7—H7A···O1viii hydrogen bonds to form the three-dimensional supramolecular framework.

Experimental

A mixture of 3,5-pyrazoledicarboxylic acid (0.2 mmol, 34.8 mg), Cd(NO3)2.4H2O (0.1 mmol, 30.8 mg), piperazine (0.2 mmol, 17.2 mg) and H2O (8 ml) was sealed in a 15 ml Teflon-lined bomb and heated at 150°C for 5 days. The reaction mixture was slowly cooled to room temperature to obtain the colorless block crystals of (I) suitable for X-ray diffraction analysis.

Refinement

Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C—H = 0.93 Å for aromatic H atom, 0.97 Å for methylene H atoms, respectively, and Uiso(H) = 1.2Ueq(C). The H atoms on the O and N atoms were located in difference Fourier map with their bond lengths freely refined and Uiso(H) = 1.2Ueq(O or N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radii. [Symmetry code; (i) 1 - x, 1 - y, -z.]

Fig. 2.

Fig. 2.

A view of the crystal packing. Hydrogen bonds are indicated by green dashed lines.

Crystal data

C4H12N2·2C5H3N2O4·4H2O F(000) = 496
Mr = 470.41 Dx = 1.560 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1373 reflections
a = 8.3363 (13) Å θ = 2.7–24.0°
b = 16.246 (3) Å µ = 0.14 mm1
c = 7.3930 (11) Å T = 291 K
β = 90.812 (3)° Block, white
V = 1001.2 (3) Å3 0.15 × 0.14 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 1946 independent reflections
Radiation source: fine-focus sealed tube 1524 reflections with I > 2σ(I)
graphite Rint = 0.051
phi and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.980, Tmax = 0.984 k = −13→19
5265 measured reflections l = −8→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0729P)2] where P = (Fo2 + 2Fc2)/3
1946 reflections (Δ/σ)max < 0.001
169 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1506 (3) 0.78226 (15) 0.2962 (3) 0.0267 (6)
C2 0.9861 (3) 0.77149 (14) 0.2216 (3) 0.0233 (6)
C3 0.8727 (3) 0.82885 (15) 0.1741 (3) 0.0256 (6)
H3 0.8827 0.8858 0.1785 0.031*
C4 0.7391 (3) 0.78344 (14) 0.1178 (3) 0.0226 (5)
C5 0.5785 (3) 0.81182 (15) 0.0528 (3) 0.0246 (6)
C6 0.6653 (4) 0.51108 (17) −0.0379 (5) 0.0455 (8)
H6A 0.7149 0.4999 0.0790 0.055*
H6B 0.7496 0.5242 −0.1223 0.055*
C7 0.4237 (3) 0.56416 (16) 0.1024 (4) 0.0380 (7)
H7A 0.3509 0.6107 0.1070 0.046*
H7B 0.4666 0.5548 0.2233 0.046*
N1 0.9196 (2) 0.69726 (13) 0.1933 (3) 0.0266 (5)
H1 0.962 (3) 0.6522 (18) 0.220 (4) 0.032*
N2 0.7696 (2) 0.70254 (12) 0.1296 (3) 0.0262 (5)
N3 0.5556 (3) 0.58226 (14) −0.0224 (3) 0.0399 (7)
H3A 0.604 (4) 0.6268 (19) 0.020 (4) 0.048*
H3B 0.514 (4) 0.5944 (18) −0.130 (4) 0.048*
O1 1.2097 (2) 0.85001 (11) 0.3144 (3) 0.0454 (6)
O2 1.2193 (2) 0.71272 (11) 0.3390 (3) 0.0360 (5)
H2 1.311 (4) 0.7215 (17) 0.394 (4) 0.043*
O3 0.5431 (2) 0.88609 (10) 0.0779 (3) 0.0360 (5)
O4 0.4901 (2) 0.75870 (11) −0.0188 (3) 0.0358 (5)
O5 0.0107 (3) 0.53912 (14) 0.2765 (4) 0.0528 (7)
H5A −0.077 (5) 0.510 (2) 0.316 (5) 0.063*
H5B 0.093 (5) 0.539 (2) 0.346 (5) 0.063*
O6 0.2621 (2) 0.51492 (13) 0.5325 (3) 0.0476 (6)
H6C 0.323 (4) 0.472 (2) 0.486 (5) 0.057*
H6D 0.320 (4) 0.549 (2) 0.556 (5) 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0215 (13) 0.0285 (14) 0.0299 (15) 0.0002 (11) −0.0059 (11) 0.0006 (11)
C2 0.0199 (12) 0.0226 (13) 0.0272 (14) −0.0006 (10) −0.0039 (10) 0.0002 (10)
C3 0.0205 (13) 0.0193 (12) 0.0369 (15) −0.0020 (9) −0.0056 (10) −0.0016 (10)
C4 0.0189 (12) 0.0203 (12) 0.0286 (14) 0.0011 (10) −0.0045 (10) −0.0004 (10)
C5 0.0159 (12) 0.0228 (13) 0.0351 (15) −0.0025 (10) −0.0040 (10) 0.0030 (11)
C6 0.0399 (17) 0.0443 (18) 0.052 (2) −0.0078 (14) 0.0024 (14) −0.0050 (15)
C7 0.0455 (17) 0.0286 (15) 0.0398 (17) 0.0027 (12) −0.0021 (14) −0.0035 (12)
N1 0.0191 (11) 0.0186 (11) 0.0417 (14) 0.0025 (9) −0.0092 (9) 0.0022 (9)
N2 0.0169 (10) 0.0215 (11) 0.0398 (13) −0.0001 (8) −0.0103 (9) 0.0011 (9)
N3 0.0616 (17) 0.0210 (12) 0.0370 (15) −0.0144 (11) −0.0069 (12) −0.0007 (10)
O1 0.0326 (11) 0.0284 (11) 0.0745 (16) −0.0083 (8) −0.0248 (10) 0.0010 (10)
O2 0.0195 (9) 0.0284 (10) 0.0597 (14) −0.0004 (8) −0.0183 (9) 0.0030 (9)
O3 0.0239 (10) 0.0218 (10) 0.0622 (14) 0.0044 (8) −0.0093 (9) −0.0002 (9)
O4 0.0221 (9) 0.0282 (10) 0.0566 (13) −0.0002 (8) −0.0167 (9) −0.0048 (9)
O5 0.0395 (12) 0.0361 (12) 0.0826 (19) 0.0042 (10) −0.0040 (12) 0.0144 (11)
O6 0.0345 (12) 0.0334 (12) 0.0748 (17) −0.0035 (9) −0.0015 (11) −0.0107 (11)

Geometric parameters (Å, °)

C1—O1 1.213 (3) C6—H6B 0.9700
C1—O2 1.304 (3) C7—N3 1.476 (4)
C1—C2 1.481 (3) C7—C6i 1.504 (4)
C2—N1 1.342 (3) C7—H7A 0.9700
C2—C3 1.369 (3) C7—H7B 0.9700
C3—C4 1.395 (3) N1—N2 1.333 (3)
C3—H3 0.9300 N1—H1 0.84 (3)
C4—N2 1.341 (3) N3—H3A 0.88 (3)
C4—C5 1.489 (3) N3—H3B 0.88 (3)
C5—O4 1.248 (3) O2—H2 0.87 (3)
C5—O3 1.256 (3) O5—H5A 0.92 (4)
C6—N3 1.480 (4) O5—H5B 0.85 (4)
C6—C7i 1.504 (4) O6—H6C 0.93 (3)
C6—H6A 0.9700 O6—H6D 0.76 (3)
O1—C1—O2 125.7 (2) H6A—C6—H6B 108.0
O1—C1—C2 121.4 (2) N3—C7—C6i 109.4 (2)
O2—C1—C2 112.9 (2) N3—C7—H7A 109.8
N1—C2—C3 106.9 (2) C6i—C7—H7A 109.8
N1—C2—C1 122.8 (2) N3—C7—H7B 109.8
C3—C2—C1 130.3 (2) C6i—C7—H7B 109.8
C2—C3—C4 105.2 (2) H7A—C7—H7B 108.2
C2—C3—H3 127.4 N2—N1—C2 112.3 (2)
C4—C3—H3 127.4 N2—N1—H1 122.4 (18)
N2—C4—C3 110.4 (2) C2—N1—H1 125.1 (19)
N2—C4—C5 119.6 (2) N1—N2—C4 105.21 (19)
C3—C4—C5 130.0 (2) C7—N3—C6 111.1 (2)
O4—C5—O3 126.1 (2) C7—N3—H3A 106 (2)
O4—C5—C4 116.5 (2) C6—N3—H3A 113 (2)
O3—C5—C4 117.5 (2) C7—N3—H3B 108 (2)
N3—C6—C7i 111.0 (2) C6—N3—H3B 110 (2)
N3—C6—H6A 109.4 H3A—N3—H3B 108 (3)
C7i—C6—H6A 109.4 C1—O2—H2 110.5 (18)
N3—C6—H6B 109.4 H5A—O5—H5B 117 (3)
C7i—C6—H6B 109.4 H6C—O6—H6D 107 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O5ii 0.84 (3) 1.93 (3) 2.746 (3) 167 (3)
O2—H2···O4iii 0.87 (3) 1.65 (3) 2.520 (2) 175 (3)
N3—H3A···O4 0.88 (3) 2.36 (3) 2.918 (3) 121 (2)
N3—H3A···N2 0.88 (3) 2.01 (3) 2.865 (3) 162 (3)
N3—H3B···O3iv 0.88 (3) 2.20 (3) 2.999 (3) 150 (3)
O5—H5B···O6 0.85 (4) 2.00 (4) 2.831 (3) 166 (3)
O5—H5A···O6v 0.92 (4) 1.96 (4) 2.833 (3) 157 (3)
O6—H6C···O3vi 0.93 (3) 1.85 (3) 2.779 (3) 173 (3)
O6—H6D···O3vii 0.76 (3) 2.14 (3) 2.858 (3) 158 (4)
C6—H6B···O5i 0.97 2.53 3.348 (4) 142
C7—H7A···O1viii 0.97 2.53 3.091 (3) 117

Symmetry codes: (ii) x+1, y, z; (iii) x+1, −y+3/2, z+1/2; (iv) x, −y+3/2, z−1/2; (v) −x, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x, −y+3/2, z+1/2; (i) −x+1, −y+1, −z; (viii) x−1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2361).

References

  1. Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2000). SMART, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. King, P., Clèrac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem.42, 3492–3500. [DOI] [PubMed]
  4. Li, Z.-H. & Su, K.-M. (2007). Acta Cryst. E63, o4744.
  5. Pan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J.7, 4431–4437. [DOI] [PubMed]
  6. Reviriego, F., Rodriguez-Franco, M. I., Navarro, P., Garcĺa-España, E., Liu-González, M., Verdejo, B. & Domènech, A. (2006). J. Am. Chem. Soc.128, 16458–16459. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003655X/om2361sup1.cif

e-66-o2578-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003655X/om2361Isup2.hkl

e-66-o2578-Isup2.hkl (95.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES