Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 8;66(Pt 10):m1225. doi: 10.1107/S1600536810035051

Bis[2-amino-6-methyl­pyrimidin-4(1H)-one-κ2 N 3,O]dichloridocadmium(II)

Kamel Kaabi a, Meher El Glaoui a, P S Pereira Silva b, M Ramos Silva b, Cherif Ben Nasr a,*
PMCID: PMC2983177  PMID: 21587381

Abstract

In the title compound, [CdCl2(C5H7N3O)2], the CdII atom is six-coordinated by two heterocyclic N atoms [Cd—N = 2.261 (2) and 2.286 (2) Å] and two O atoms [Cd—O = 2.624 (2) and 2.692 (2) Å] from two bidentate chelate 2-amino-6-methyl­pyrimidin-4(1H)-one ligands and two chloride ions [Cd—Cl = 2.4674 (6) and 2.4893 (7) Å]. The crystal packing is characterized by an open-framework architecture with the crystal packing stabilized by inter­molecular N—H⋯Cl and N—H⋯O hydrogen bonds.

Related literature

For common applications of materials with open framework structures, see: Yaghi et al. (2003); Kitagawa et al. (2004). For literature on metal-organic compounds, see: Kaabi et al. (2010). For a discussion of geometrical features in related structures, see: Min et al. (2009); Qing-Yan & Li (2005); Moloto et al. (2003).graphic file with name e-66-m1225-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C5H7N3O)2]

  • M r = 433.57

  • Monoclinic, Inline graphic

  • a = 17.4204 (5) Å

  • b = 7.5467 (2) Å

  • c = 25.4422 (6) Å

  • β = 106.1333 (11)°

  • V = 3213.07 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.676, T max = 0.801

  • 41891 measured reflections

  • 4494 independent reflections

  • 3924 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.108

  • S = 1.27

  • 4494 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.06 e Å−3

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035051/zs2058sup1.cif

e-66-m1225-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035051/zs2058Isup2.hkl

e-66-m1225-Isup2.hkl (215.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2Ai 0.86 1.92 2.704 (3) 151
N6—H6A⋯Cl3 0.86 2.62 3.417 (3) 155
N6—H6B⋯O2Ai 0.86 2.47 3.116 (3) 132
N6—H6B⋯Cl3i 0.86 2.80 3.383 (2) 127
N5A—H5A⋯O2ii 0.86 1.87 2.692 (2) 158
N6A—H6A1⋯Cl2 0.86 2.51 3.336 (3) 161
N6A—H6A2⋯Cl3iii 0.86 2.73 3.430 (2) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), under the scholarship SFRH/BD/38387/2008.

supplementary crystallographic information

Comment

Open framework crystalline solids containing micro or mesoporisity have been studied extensively in recent years, due to their intriguing structures and considerable technological importance in magnetic, luminescent, porous and catalytic materials (Yaghi, et al., 2003; Kitagawa, et al., 2004). In this work a new member of this family is presented, the title complex involving CdCl2 and the ligand 2-amino-4-hydroxy-6-methylpyrimidine, [Cd(C5H7N3O)2Cl2], (I) which was obtained during our studies on the preparation of new organometallic materials (Kaabi,et al., 2010).

In the atomic arrangement of the title compound, the distorted octahedral Cd environment comprises two chloride donor atoms and two N and two O donor atoms from two bidentate chelate organic ligands (Fig. 1). The bond distances around the Cd atom [Cd—N, 2.261 (2), 2.286 (2) Å; Cd—O, 2.624 (2), 2.692 (2) Å; Cd—Cl, 2.4674 (6), 2.4893 (7) Å] are normal (Min et al., 2009; Qing-Yan & Li, 2005; Moloto et al., 2003). The octahedra have intramolecular N—H···Cl hydrogen bonds and are interconnected by a set of N—H···Cl and N—H···O hydrogen bonds (Table 1) leading to the formation of a three-dimensional network structure (Fig. 2). Among the hydrogen bonds, one is three-centred [N6—H6B···(O2A,Cl3)]. The overall packing pattern, presented in Fig. 3, shows that the different components of the title material are arranged so as to create pores extending along the c axis and located at (0, 0, 0) and (1/2, 1/2, 0). Thus, this organic-inorganic hybrid open framework material could have potential application as a molecular sieve. An examination of the organic moiety features shows that the bond distances for C2—O2 [1.248 (3) Å] and C2A—O2A [1.255 (3) Å] clearly indicate two double bonds. This allows us to confirm that the first step of the preparation of the title compound consists of the transformation of the 2-amino-6-methyl-4-pyrimidinol into 2-amino-6-methylpyrimidin-4-(1H)-one. However, the present investigation clearly shows that the N6—C6 [1.332 (3) Å] and N6A—C6A [1.324 (3) Å] distances are approximately equal to that of a C=N double bond length, indicating that N3 and N6 nitrogen atoms of the amino group are probably in an sp2 hybridization. These bond length features are consistent with imino resonance and suggest a large contribution from it to the stability of the title compound.

Experimental

A solution of CdCl2 (37 mg, 0.2 mmol) in water (6 ml) was added dropwise to a solution of 2-amino-4-hydroxy-6-methylpyrimidine (50 mg, 0.4 mmol) in ethanol (6 ml). After stirring for 30 min, the mixture was filtered and the resultant solution allowed to evaporate at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 58%).

Refinement

All H atoms were located in a difference Fourier synthesis but were placed in calculated positions and allowed to ride on their parent atoms, with C—Haromatic = 0.93 Å, C—Hmethyl = 0.96 Å and N—H = 0.86 Å, and with Uiso = 1.2–1.5U</ieq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing the atom numbering scheme. with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of (I) viewed down the b axis. Hydrogen bonds are denoted by dashed lines.

Fig. 3.

Fig. 3.

The packing of (I) viewed down the c axis. Hydrogen bonds are denoted by dashed lines.

Crystal data

[CdCl2(C5H7N3O)2] F(000) = 1712
Mr = 433.57 Dx = 1.793 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9775 reflections
a = 17.4204 (5) Å θ = 3.0–29.3°
b = 7.5467 (2) Å µ = 1.70 mm1
c = 25.4422 (6) Å T = 293 K
β = 106.1333 (11)° Flat prism, colourless
V = 3213.07 (15) Å3 0.32 × 0.20 × 0.13 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer 4494 independent reflections
Radiation source: fine-focus sealed tube 3924 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 29.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −24→24
Tmin = 0.676, Tmax = 0.801 k = −10→10
41891 measured reflections l = −35→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.0986P] where P = (Fo2 + 2Fc2)/3
4494 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −1.06 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 5 reflections were affected by the beamstop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.049831 (10) 0.66207 (2) 0.118222 (6) 0.03647 (9)
Cl2 0.14243 (4) 0.55912 (10) 0.06682 (3) 0.05302 (18)
Cl3 0.00058 (5) 0.38970 (10) 0.15353 (3) 0.05174 (18)
O2 0.11698 (14) 0.9762 (3) 0.13204 (7) 0.0528 (5)
N1 0.10788 (13) 0.7995 (3) 0.19965 (8) 0.0359 (4)
N5 0.13746 (13) 0.9069 (3) 0.28892 (8) 0.0403 (5)
H5 0.1385 0.8886 0.3225 0.048*
N6 0.09525 (17) 0.6185 (3) 0.26931 (9) 0.0538 (6)
H6A 0.0802 0.5332 0.2463 0.065*
H6B 0.0986 0.6023 0.3033 0.065*
C2 0.12795 (15) 0.9609 (3) 0.18243 (9) 0.0383 (5)
C3 0.15860 (17) 1.0967 (3) 0.22184 (10) 0.0432 (6)
H3 0.1770 1.2029 0.2113 0.052*
C4 0.16041 (15) 1.0686 (3) 0.27419 (10) 0.0381 (5)
C6 0.11331 (14) 0.7758 (4) 0.25216 (9) 0.0365 (5)
C7 0.1859 (2) 1.2017 (4) 0.31928 (12) 0.0556 (7)
H7A 0.1992 1.3112 0.3047 0.083*
H7B 0.2319 1.1580 0.3465 0.083*
H7C 0.1431 1.2213 0.3356 0.083*
O2A −0.08881 (13) 0.8086 (3) 0.12328 (7) 0.0480 (5)
N1A −0.04596 (12) 0.7847 (3) 0.04894 (7) 0.0329 (4)
N5A −0.12319 (13) 0.8922 (3) −0.03495 (8) 0.0358 (4)
H5A −0.1284 0.9100 −0.0692 0.043*
N6A 0.00074 (14) 0.7722 (3) −0.02733 (9) 0.0439 (5)
H6A1 0.0447 0.7261 −0.0080 0.053*
H6A2 −0.0063 0.7913 −0.0617 0.053*
C2A −0.10327 (16) 0.8387 (3) 0.07295 (10) 0.0352 (5)
C3A −0.17409 (16) 0.9202 (4) 0.04057 (10) 0.0416 (5)
H3A −0.2138 0.9565 0.0562 0.050*
C4A −0.18262 (14) 0.9439 (3) −0.01337 (10) 0.0382 (5)
C6A −0.05619 (15) 0.8137 (3) −0.00417 (9) 0.0334 (5)
C7A −0.25489 (18) 1.0267 (4) −0.05236 (12) 0.0544 (7)
H7A1 −0.2961 1.0418 −0.0343 0.082*
H7A2 −0.2740 0.9512 −0.0836 0.082*
H7A3 −0.2407 1.1401 −0.0640 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03843 (13) 0.04544 (14) 0.02572 (12) 0.00425 (7) 0.00919 (8) −0.00182 (6)
Cl2 0.0401 (3) 0.0646 (4) 0.0606 (4) −0.0029 (3) 0.0243 (3) −0.0193 (3)
Cl3 0.0707 (5) 0.0453 (3) 0.0463 (4) −0.0026 (3) 0.0282 (4) −0.0019 (3)
O2 0.0827 (15) 0.0568 (11) 0.0220 (8) −0.0044 (10) 0.0196 (9) 0.0058 (7)
N1 0.0453 (12) 0.0419 (10) 0.0224 (9) −0.0027 (9) 0.0125 (8) 0.0001 (7)
N5 0.0474 (12) 0.0558 (12) 0.0186 (8) −0.0015 (10) 0.0108 (8) −0.0001 (8)
N6 0.0727 (18) 0.0589 (13) 0.0322 (12) −0.0167 (13) 0.0189 (12) 0.0060 (10)
C2 0.0455 (13) 0.0467 (13) 0.0234 (10) 0.0014 (11) 0.0110 (10) 0.0034 (9)
C3 0.0525 (16) 0.0434 (13) 0.0336 (12) −0.0048 (12) 0.0121 (11) 0.0021 (10)
C4 0.0347 (12) 0.0483 (13) 0.0298 (11) 0.0013 (10) 0.0066 (9) −0.0026 (9)
C6 0.0379 (12) 0.0479 (12) 0.0262 (11) 0.0005 (10) 0.0128 (9) 0.0057 (10)
C7 0.0622 (19) 0.0615 (16) 0.0383 (14) 0.0043 (15) 0.0059 (13) −0.0127 (13)
O2A 0.0588 (12) 0.0672 (12) 0.0216 (8) 0.0185 (10) 0.0173 (8) 0.0067 (7)
N1A 0.0368 (10) 0.0419 (10) 0.0218 (9) 0.0025 (8) 0.0112 (8) 0.0004 (7)
N5A 0.0423 (11) 0.0450 (10) 0.0194 (8) −0.0070 (9) 0.0076 (8) 0.0030 (8)
N6A 0.0480 (12) 0.0592 (13) 0.0298 (10) −0.0047 (11) 0.0199 (9) −0.0062 (10)
C2A 0.0417 (13) 0.0421 (12) 0.0239 (11) 0.0031 (9) 0.0127 (10) 0.0028 (8)
C3A 0.0399 (13) 0.0533 (14) 0.0346 (12) 0.0079 (11) 0.0156 (10) 0.0093 (11)
C4A 0.0364 (12) 0.0440 (12) 0.0318 (12) −0.0039 (10) 0.0055 (10) 0.0080 (9)
C6A 0.0402 (13) 0.0391 (11) 0.0222 (10) −0.0098 (9) 0.0110 (9) −0.0044 (8)
C7A 0.0479 (16) 0.0656 (18) 0.0435 (15) 0.0020 (14) 0.0023 (13) 0.0191 (13)

Geometric parameters (Å, °)

Cd1—N1A 2.261 (2) C7—H7A 0.9600
Cd1—N1 2.286 (2) C7—H7B 0.9600
Cd1—Cl2 2.4674 (6) C7—H7C 0.9600
Cd1—Cl3 2.4893 (7) O2A—C2A 1.255 (3)
Cd1—O2 2.624 (2) N1A—C6A 1.331 (3)
Cd1—O2A 2.692 (2) N1A—C2A 1.369 (3)
O2—C2 1.248 (3) N5A—C6A 1.348 (3)
N1—C6 1.325 (3) N5A—C4A 1.357 (3)
N1—C2 1.372 (3) N5A—H5A 0.8600
N5—C6 1.346 (3) N6A—C6A 1.324 (3)
N5—C4 1.369 (3) N6A—H6A1 0.8600
N5—H5 0.8600 N6A—H6A2 0.8600
N6—C6 1.332 (3) C2A—C3A 1.419 (4)
N6—H6A 0.8600 C3A—C4A 1.351 (3)
N6—H6B 0.8600 C3A—H3A 0.9300
C2—C3 1.429 (3) C4A—C7A 1.505 (3)
C3—C4 1.340 (3) C7A—H7A1 0.9600
C3—H3 0.9300 C7A—H7A2 0.9600
C4—C7 1.496 (4) C7A—H7A3 0.9600
Cl2—Cd1—Cl3 105.84 (3) N1—C6—N5 121.5 (2)
Cl2—Cd1—O2 91.30 (5) N6—C6—N5 118.9 (2)
Cl2—Cd1—O2A 151.90 (4) C4—C7—H7A 109.5
Cl2—Cd1—N1 115.69 (6) C4—C7—H7B 109.5
Cl2—Cd1—N1A 99.51 (5) H7A—C7—H7B 109.5
Cl3—Cd1—O2 152.05 (4) C4—C7—H7C 109.5
Cl3—Cd1—O2A 85.31 (5) H7A—C7—H7C 109.5
Cl3—Cd1—N1 99.07 (6) H7B—C7—H7C 109.5
Cl3—Cd1—N1A 111.44 (6) C6A—N1A—C2A 119.7 (2)
O2—Cd1—O2A 89.71 (7) C6A—N1A—Cd1 136.08 (17)
O2—Cd1—N1 53.14 (7) C2A—N1A—Cd1 104.22 (14)
O2—Cd1—N1A 86.54 (7) C6A—N5A—C4A 121.7 (2)
O2A—Cd1—N1 86.97 (7) C6A—N5A—H5A 119.1
O2A—Cd1—N1A 52.52 (6) C4A—N5A—H5A 119.1
N1—Cd1—N1A 124.44 (8) C6A—N6A—H6A1 120.0
C2—O2—Cd1 89.39 (15) C6A—N6A—H6A2 120.0
C6—N1—C2 119.2 (2) H6A1—N6A—H6A2 120.0
C6—N1—Cd1 137.93 (17) O2A—C2A—N1A 115.9 (2)
C2—N1—Cd1 101.61 (14) O2A—C2A—C3A 124.5 (2)
C6—N5—C4 121.6 (2) N1A—C2A—C3A 119.6 (2)
C6—N5—H5 119.2 C4A—C3A—C2A 118.7 (2)
C4—N5—H5 119.2 C4A—C3A—H3A 120.7
C6—N6—H6A 120.0 C2A—C3A—H3A 120.7
C6—N6—H6B 120.0 C3A—C4A—N5A 119.5 (2)
H6A—N6—H6B 120.0 C3A—C4A—C7A 124.1 (3)
O2—C2—N1 115.5 (2) N5A—C4A—C7A 116.4 (2)
O2—C2—C3 125.1 (2) N6A—C6A—N1A 120.5 (2)
N1—C2—C3 119.4 (2) N6A—C6A—N5A 118.7 (2)
C4—C3—C2 119.0 (2) N1A—C6A—N5A 120.8 (2)
C4—C3—H3 120.5 C4A—C7A—H7A1 109.5
C2—C3—H3 120.5 C4A—C7A—H7A2 109.5
C3—C4—N5 119.0 (2) H7A1—C7A—H7A2 109.5
C3—C4—C7 125.1 (3) C4A—C7A—H7A3 109.5
N5—C4—C7 115.8 (2) H7A1—C7A—H7A3 109.5
N1—C6—N6 119.5 (2) H7A2—C7A—H7A3 109.5
N1A—Cd1—O2—C2 135.12 (17) Cd1—N1—C6—N5 −164.08 (19)
N1—Cd1—O2—C2 −3.77 (15) C4—N5—C6—N1 −2.5 (4)
Cl2—Cd1—O2—C2 −125.43 (16) C4—N5—C6—N6 176.9 (2)
Cl3—Cd1—O2—C2 3.3 (2) N1—Cd1—N1A—C6A 126.3 (2)
N1A—Cd1—N1—C6 117.1 (3) Cl2—Cd1—N1A—C6A −4.0 (2)
Cl2—Cd1—N1—C6 −119.4 (2) Cl3—Cd1—N1A—C6A −115.3 (2)
Cl3—Cd1—N1—C6 −6.8 (3) O2—Cd1—N1A—C6A 86.7 (2)
O2—Cd1—N1—C6 169.8 (3) N1—Cd1—N1A—C2A −52.71 (18)
N1A—Cd1—N1—C2 −49.21 (18) Cl2—Cd1—N1A—C2A 176.92 (14)
Cl2—Cd1—N1—C2 74.29 (16) Cl3—Cd1—N1A—C2A 65.63 (15)
Cl3—Cd1—N1—C2 −173.16 (14) O2—Cd1—N1A—C2A −92.33 (15)
O2—Cd1—N1—C2 3.50 (14) C6A—N1A—C2A—O2A −179.1 (2)
Cd1—O2—C2—N1 5.6 (2) Cd1—N1A—C2A—O2A 0.1 (3)
Cd1—O2—C2—C3 −174.0 (3) C6A—N1A—C2A—C3A 1.9 (3)
C6—N1—C2—O2 −176.1 (2) Cd1—N1A—C2A—C3A −178.86 (19)
Cd1—N1—C2—O2 −6.5 (3) O2A—C2A—C3A—C4A −179.5 (3)
C6—N1—C2—C3 3.6 (4) N1A—C2A—C3A—C4A −0.7 (4)
Cd1—N1—C2—C3 173.1 (2) C2A—C3A—C4A—N5A −1.0 (4)
O2—C2—C3—C4 173.8 (3) C2A—C3A—C4A—C7A 179.4 (2)
N1—C2—C3—C4 −5.8 (4) C6A—N5A—C4A—C3A 1.5 (4)
C2—C3—C4—N5 4.0 (4) C6A—N5A—C4A—C7A −178.9 (2)
C2—C3—C4—C7 −176.0 (3) C2A—N1A—C6A—N6A 175.9 (2)
C6—N5—C4—C3 0.1 (4) Cd1—N1A—C6A—N6A −3.0 (4)
C6—N5—C4—C7 −179.9 (2) C2A—N1A—C6A—N5A −1.5 (3)
C2—N1—C6—N6 −178.8 (2) Cd1—N1A—C6A—N5A 179.61 (17)
Cd1—N1—C6—N6 16.5 (4) C4A—N5A—C6A—N6A −177.6 (2)
C2—N1—C6—N5 0.5 (4) C4A—N5A—C6A—N1A −0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5···O2Ai 0.86 1.92 2.704 (3) 151
N6—H6A···Cl3 0.86 2.62 3.417 (3) 155
N6—H6B···O2Ai 0.86 2.47 3.116 (3) 132
N6—H6B···Cl3i 0.86 2.80 3.383 (2) 127
N5A—H5A···O2ii 0.86 1.87 2.692 (2) 158
N6A—H6A1···Cl2 0.86 2.51 3.336 (3) 161
N6A—H6A2···Cl3iii 0.86 2.73 3.430 (2) 139

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+2, −z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2058).

References

  1. Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kaabi, K., El Glaoui, M., Pereira Silva, P. S., Ramos Silva, M. & Ben Nasr, C. (2010). Acta Cryst. E66, m617. [DOI] [PMC free article] [PubMed]
  3. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [DOI] [PubMed]
  4. Min, H., Kun, Z., Yi-Zhi, L. & Jin, Z. (2009). Polyhedron, 28, 445–452
  5. Moloto, M. J., Malik, M. A., O’Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595–603.
  6. Qing-Yan, L. & Li, X. (2005). Inorg. Chem. Commun.8, 401–405.
  7. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035051/zs2058sup1.cif

e-66-m1225-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035051/zs2058Isup2.hkl

e-66-m1225-Isup2.hkl (215.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES