Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 15;66(Pt 10):o2559–o2560. doi: 10.1107/S1600536810035762

(E)-1-(2-Fur­yl)-3-(2,4,6-trimeth­oxy­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Thitipone Suwunwong b, Suchada Chantrapromma b,§, Chatchanok Karalai b
PMCID: PMC2983191  PMID: 21587546

Abstract

In the title heteroaryl chalcone derivative, C16H16O5, the dihedral angle between the furan and benzene rings is 14.45 (6)°. The three meth­oxy groups are almost coplanar with their attached benzene ring [C—C—O—C torsion angles = 2.07 (17), −5.04 (17) and 2.85 (16)°]. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, adjacent mol­ecules are linked into X-shaped chains along the c axis by weak C—H⋯O(enone) inter­actions. These chains are stacked along the b axis. C⋯O [3.3308 (13)–3.4123 (14) Å] short contacts are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Suwunwong et al. (2009. For background to and applications of chalcones and heteroaryl chalcones, see: Gaber et al. (2008); Go et al. (2005); Jung et al. (2008); Ng et al. (2009); Ni et al. (2004); Nowakowska (2007); Patil & Dharmaprakash (2008) and Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).graphic file with name e-66-o2559-scheme1.jpg

Experimental

Crystal data

  • C16H16O5

  • M r = 288.29

  • Monoclinic, Inline graphic

  • a = 38.5688 (5) Å

  • b = 3.93493 (5) Å

  • c = 18.2638 (3) Å

  • β = 103.901 (1)°

  • V = 2690.68 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.41 × 0.15 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.957, T max = 0.990

  • 20657 measured reflections

  • 3941 independent reflections

  • 3077 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.113

  • S = 1.06

  • 3941 reflections

  • 254 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035762/hb5630sup1.cif

e-66-o2559-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035762/hb5630Isup2.hkl

e-66-o2559-Isup2.hkl (193.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.956 (15) 2.496 (15) 3.3512 (14) 148.9 (13)
C6—H6⋯O5 0.965 (15) 2.260 (14) 2.8197 (15) 116.0 (11)
C14—H14A⋯O4ii 0.975 (15) 2.589 (16) 3.4462 (14) 146.7 (11)
C15—H15A⋯O1iii 0.989 (16) 2.546 (16) 3.4293 (18) 148.6 (12)
C16—H16A⋯O1iii 0.982 (16) 2.575 (16) 3.4120 (16) 143.0 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for a research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

supplementary crystallographic information

Comment

Chalcone and heteroaryl chalcones are very interesting due to their variety of applications with biological activities. Many of them possess analgesic, anti-inflammatory and antibacterial properties (Go et al., 2005; Ni et al., 2004; Nowakowska, 2007) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) and tyrosinase inhibitory (Ng et al., 2009) activities. Moreover synthetic chalcones and heteroaryl chalcones have also been found to exhibit non-linear optical (Patil & Dharmaprakash, 2008), fluorescent (Jung et al., 2008) and laser properties (Gaber et al., 2008) . In continuing our on-going research on antibacterial activities and fluorescence properties of chalcones and heteroaryl chalcone derivatives, the title heteroaryl chalcone was synthesized in order to study its antibacterial and fluorescence properties. However our results show that (I) do not possess fluorescence property. In addition our biological testing found that (I) was inactive against the tested bacteria strains which are Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei. Herein we report the crystal structure of (I).

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C6═C7 double bond [1.3512 (16) Å] with the C5–C6–C7–C8 torsion angle being -176.44 (12)°. The whole molecule is slightly twisted with the dihedral angle between the furan and benzene rings being 14.45 (6)°. Atoms of the propenone unit (C5, C6, C7 and O1) lie on the same plane [r.m.s. 0.0179 (1)]. This plane makes dihedral angles of 11.38 (8) and 9.12 (8)° with furan and phenyl rings, respectively. All the three substituted methoxy groups of 2,4,6-trimethoxyphenyl unit are almost co-planar with the phenyl ring as indicated by torsion angles C14–O3–C9–C10 = 2.07 (17)°, C15–O4–C11–C12 = -5.04 (17)° and C16–O5–C13–C12 = 2.85 (16)°. In the structure, a weak intramolecular C6—H6···O5 interaction generates an S(6) ring motif (Bernstein et al., 1995) (Table 1). The bond lengths have normal values (Allen et al., 1987) and bond lengths and angles are comparable with its related structures (Chantrapromma et al., 2009; Suwunwong et al., 2009).

In the crystal packing, all the three methoxy groups involve in weak intermolecular C—H···O interactions (Table 1). The adjacent molecules are linked into X-shape chains along the c axis through the enone unit by weak C—H···O interactions (Fig. 2, Table 1). The adjacent chains are arranged into face-to-face manner (Fig. 3) and stacked along the b axis (Fig. 3). The crystal is further stabilized by C···O[3.3308 (13)-3.4123 (14) Å] short contacts.

Experimental

The title compound was prepared by the condensation of the solution of 2-furyl methylketone (2 mmol, 0.22 g) in ethanol (15 ml) and 2,4,6-trimethoxybenzaldehyde (2 mmol, 0.40 g) in ethanol (15 ml) in the presence of 20% NaOH (aq) 5 ml at 278 K for 5 hr. The resulting solid which was obtained was further collected by filtration, washed with distilled water and dried in air. Colorless blocks of (I) were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 390–391 K.

Refinement

All H atoms were located in difference maps and refined isotropically. The highest residual electron density peak is located at 0.63 Å from C10 and the deepest hole is located at 1.12 Å from C2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids. Weak intramolecular interactions are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the c axis, showing X-chains running along the c axis. Weak C—H···O interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing of (I) viewed along the b axis, showing chains stacking along the b axis. Weak C—H···O interactions are shown as dashed lines.

Crystal data

C16H16O5 F(000) = 1216
Mr = 288.29 Dx = 1.423 Mg m3
Monoclinic, C2/c Melting point = 390–391 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 38.5688 (5) Å Cell parameters from 3941 reflections
b = 3.93493 (5) Å θ = 1.1–30.0°
c = 18.2638 (3) Å µ = 0.11 mm1
β = 103.901 (1)° T = 100 K
V = 2690.68 (6) Å3 Block, colorless
Z = 8 0.41 × 0.15 × 0.09 mm

Data collection

Bruker APEXII CCD diffractometer 3941 independent reflections
Radiation source: sealed tube 3077 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 30.0°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −54→54
Tmin = 0.957, Tmax = 0.990 k = −5→5
20657 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0556P)2 + 1.4768P] where P = (Fo2 + 2Fc2)/3
3941 reflections (Δ/σ)max = 0.001
254 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15077 (2) 0.0988 (3) 0.84899 (5) 0.0215 (2)
O2 0.21727 (2) 0.3478 (2) 0.90839 (4) 0.01663 (19)
O3 0.05690 (2) −0.2197 (2) 0.65467 (5) 0.01694 (19)
O4 0.04708 (2) −0.1724 (2) 0.39117 (5) 0.01735 (19)
O5 0.15024 (2) 0.2851 (2) 0.56781 (5) 0.01639 (19)
C1 0.25039 (3) 0.4913 (3) 0.92049 (7) 0.0174 (2)
H1 0.2651 (4) 0.474 (4) 0.9706 (8) 0.018 (4)*
C2 0.25591 (3) 0.6274 (3) 0.85645 (7) 0.0188 (3)
H2 0.2775 (4) 0.741 (4) 0.8513 (9) 0.027 (4)*
C3 0.22403 (3) 0.5659 (3) 0.79963 (7) 0.0174 (2)
H3 0.2194 (4) 0.630 (4) 0.7461 (9) 0.021 (4)*
C4 0.20144 (3) 0.3929 (3) 0.83315 (6) 0.0141 (2)
C5 0.16581 (3) 0.2391 (3) 0.80482 (6) 0.0150 (2)
C6 0.15171 (3) 0.2521 (3) 0.72275 (7) 0.0153 (2)
H6 0.1649 (4) 0.381 (4) 0.6935 (8) 0.019 (4)*
C7 0.12181 (3) 0.0762 (3) 0.69077 (6) 0.0145 (2)
H7 0.1101 (4) −0.049 (4) 0.7240 (8) 0.020 (4)*
C8 0.10376 (3) 0.0332 (3) 0.61194 (6) 0.0133 (2)
C9 0.06997 (3) −0.1318 (3) 0.59416 (6) 0.0132 (2)
C10 0.05156 (3) −0.1931 (3) 0.52043 (7) 0.0150 (2)
H10 0.0282 (4) −0.310 (4) 0.5082 (9) 0.027 (4)*
C11 0.06682 (3) −0.0939 (3) 0.46185 (6) 0.0140 (2)
C12 0.09968 (3) 0.0689 (3) 0.47557 (6) 0.0139 (2)
H12 0.1100 (4) 0.127 (4) 0.4359 (8) 0.018 (4)*
C13 0.11766 (3) 0.1321 (3) 0.55034 (6) 0.0131 (2)
C14 0.02326 (3) −0.3920 (3) 0.63942 (7) 0.0177 (2)
H14A 0.0040 (4) −0.255 (4) 0.6091 (8) 0.018 (4)*
H14B 0.0253 (4) −0.612 (4) 0.6129 (8) 0.021 (4)*
H14C 0.0183 (4) −0.431 (4) 0.6887 (9) 0.023 (4)*
C15 0.06015 (4) −0.0546 (4) 0.32866 (7) 0.0206 (3)
H15A 0.0833 (4) −0.158 (4) 0.3269 (9) 0.024 (4)*
H15B 0.0411 (5) −0.122 (4) 0.2834 (9) 0.032 (4)*
H15C 0.0620 (4) 0.196 (4) 0.3296 (9) 0.024 (4)*
C16 0.16511 (3) 0.3953 (3) 0.50694 (7) 0.0158 (2)
H16A 0.1703 (4) 0.200 (4) 0.4778 (9) 0.021 (4)*
H16B 0.1490 (4) 0.555 (4) 0.4762 (8) 0.015 (3)*
H16C 0.1875 (4) 0.511 (4) 0.5307 (8) 0.020 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0194 (4) 0.0314 (5) 0.0145 (4) −0.0052 (4) 0.0057 (3) 0.0020 (4)
O2 0.0151 (4) 0.0227 (5) 0.0111 (4) −0.0018 (3) 0.0012 (3) 0.0000 (3)
O3 0.0143 (4) 0.0231 (5) 0.0142 (4) −0.0047 (3) 0.0049 (3) 0.0000 (3)
O4 0.0162 (4) 0.0239 (5) 0.0111 (4) −0.0038 (3) 0.0015 (3) −0.0018 (3)
O5 0.0130 (4) 0.0242 (5) 0.0119 (4) −0.0051 (3) 0.0029 (3) 0.0009 (3)
C1 0.0152 (5) 0.0204 (6) 0.0157 (6) −0.0013 (4) 0.0017 (4) −0.0018 (5)
C2 0.0174 (6) 0.0211 (6) 0.0182 (6) −0.0039 (5) 0.0049 (5) −0.0022 (5)
C3 0.0193 (6) 0.0193 (6) 0.0133 (5) −0.0018 (4) 0.0037 (4) −0.0014 (5)
C4 0.0152 (5) 0.0171 (6) 0.0094 (5) 0.0016 (4) 0.0016 (4) −0.0009 (4)
C5 0.0149 (5) 0.0171 (6) 0.0131 (5) 0.0011 (4) 0.0038 (4) −0.0007 (4)
C6 0.0155 (5) 0.0172 (6) 0.0131 (5) −0.0002 (4) 0.0033 (4) 0.0004 (4)
C7 0.0146 (5) 0.0169 (6) 0.0122 (5) 0.0018 (4) 0.0038 (4) −0.0003 (4)
C8 0.0129 (5) 0.0147 (5) 0.0124 (5) 0.0009 (4) 0.0032 (4) −0.0001 (4)
C9 0.0135 (5) 0.0139 (5) 0.0129 (5) 0.0006 (4) 0.0048 (4) 0.0008 (4)
C10 0.0125 (5) 0.0170 (6) 0.0150 (5) −0.0007 (4) 0.0027 (4) −0.0006 (4)
C11 0.0132 (5) 0.0153 (6) 0.0121 (5) 0.0011 (4) 0.0003 (4) −0.0012 (4)
C12 0.0133 (5) 0.0163 (6) 0.0121 (5) 0.0014 (4) 0.0031 (4) 0.0006 (4)
C13 0.0106 (5) 0.0133 (5) 0.0152 (5) −0.0001 (4) 0.0028 (4) 0.0002 (4)
C14 0.0142 (5) 0.0197 (6) 0.0199 (6) −0.0029 (4) 0.0058 (5) 0.0018 (5)
C15 0.0232 (6) 0.0265 (7) 0.0117 (5) −0.0043 (5) 0.0036 (5) 0.0000 (5)
C16 0.0143 (5) 0.0205 (6) 0.0133 (5) −0.0023 (4) 0.0043 (4) 0.0024 (5)

Geometric parameters (Å, °)

O1—C5 1.2315 (14) C7—C8 1.4507 (16)
O2—C1 1.3652 (14) C7—H7 0.974 (15)
O2—C4 1.3745 (13) C8—C13 1.4123 (15)
O3—C9 1.3648 (13) C8—C9 1.4220 (15)
O3—C14 1.4307 (14) C9—C10 1.3844 (16)
O4—C11 1.3673 (14) C10—C11 1.3949 (16)
O4—C15 1.4317 (15) C10—H10 0.988 (16)
O5—C13 1.3602 (13) C11—C12 1.3883 (16)
O5—C16 1.4352 (14) C12—C13 1.3974 (16)
C1—C2 1.3492 (17) C12—H12 0.936 (15)
C1—H1 0.956 (15) C14—H14A 0.976 (15)
C2—C3 1.4264 (17) C14—H14B 1.003 (16)
C2—H2 0.970 (16) C14—H14C 0.977 (16)
C3—C4 1.3617 (17) C15—H15A 0.989 (16)
C3—H3 0.984 (15) C15—H15B 1.001 (17)
C4—C5 1.4766 (16) C15—H15C 0.990 (17)
C5—C6 1.4675 (16) C16—H16A 0.982 (16)
C6—C7 1.3512 (16) C16—H16B 0.963 (15)
C6—H6 0.967 (15) C16—H16C 0.982 (16)
C1—O2—C4 106.39 (9) C9—C10—C11 119.01 (10)
C9—O3—C14 117.18 (9) C9—C10—H10 121.8 (9)
C11—O4—C15 117.18 (9) C11—C10—H10 119.2 (9)
C13—O5—C16 118.08 (9) O4—C11—C12 123.50 (10)
C2—C1—O2 111.12 (10) O4—C11—C10 114.76 (10)
C2—C1—H1 132.6 (9) C12—C11—C10 121.74 (10)
O2—C1—H1 116.2 (9) C11—C12—C13 118.39 (10)
C1—C2—C3 105.98 (11) C11—C12—H12 120.9 (9)
C1—C2—H2 125.8 (10) C13—C12—H12 120.7 (9)
C3—C2—H2 128.2 (10) O5—C13—C12 121.43 (10)
C4—C3—C2 106.90 (11) O5—C13—C8 116.18 (10)
C4—C3—H3 126.4 (9) C12—C13—C8 122.37 (10)
C2—C3—H3 126.7 (9) O3—C14—H14A 112.3 (9)
C3—C4—O2 109.60 (10) O3—C14—H14B 109.3 (8)
C3—C4—C5 133.59 (11) H14A—C14—H14B 109.8 (12)
O2—C4—C5 116.74 (10) O3—C14—H14C 105.3 (9)
O1—C5—C6 124.57 (11) H14A—C14—H14C 108.5 (12)
O1—C5—C4 119.95 (10) H14B—C14—H14C 111.5 (13)
C6—C5—C4 115.40 (10) O4—C15—H15A 112.7 (9)
C7—C6—C5 119.48 (11) O4—C15—H15B 104.0 (10)
C7—C6—H6 122.6 (9) H15A—C15—H15B 110.8 (13)
C5—C6—H6 117.9 (9) O4—C15—H15C 110.3 (9)
C6—C7—C8 130.17 (11) H15A—C15—H15C 110.6 (13)
C6—C7—H7 117.8 (9) H15B—C15—H15C 108.2 (14)
C8—C7—H7 112.0 (9) O5—C16—H16A 110.8 (9)
C13—C8—C9 116.51 (10) O5—C16—H16B 109.1 (8)
C13—C8—C7 125.09 (10) H16A—C16—H16B 112.5 (12)
C9—C8—C7 118.36 (10) O5—C16—H16C 105.8 (8)
O3—C9—C10 122.72 (10) H16A—C16—H16C 109.3 (12)
O3—C9—C8 115.31 (10) H16B—C16—H16C 109.2 (13)
C10—C9—C8 121.96 (10)
C4—O2—C1—C2 0.63 (14) C7—C8—C9—O3 3.17 (16)
O2—C1—C2—C3 −0.01 (15) C13—C8—C9—C10 0.06 (17)
C1—C2—C3—C4 −0.63 (14) C7—C8—C9—C10 −177.77 (11)
C2—C3—C4—O2 1.03 (14) O3—C9—C10—C11 179.79 (11)
C2—C3—C4—C5 −175.73 (13) C8—C9—C10—C11 0.80 (18)
C1—O2—C4—C3 −1.03 (13) C15—O4—C11—C12 −5.04 (17)
C1—O2—C4—C5 176.35 (10) C15—O4—C11—C10 175.53 (11)
C3—C4—C5—O1 −178.75 (13) C9—C10—C11—O4 178.49 (10)
O2—C4—C5—O1 4.67 (17) C9—C10—C11—C12 −0.95 (18)
C3—C4—C5—C6 4.4 (2) O4—C11—C12—C13 −179.17 (11)
O2—C4—C5—C6 −172.18 (10) C10—C11—C12—C13 0.22 (18)
O1—C5—C6—C7 −6.08 (19) C16—O5—C13—C12 2.85 (16)
C4—C5—C6—C7 170.60 (11) C16—O5—C13—C8 −178.91 (10)
C5—C6—C7—C8 −176.44 (12) C11—C12—C13—O5 178.81 (10)
C6—C7—C8—C13 10.2 (2) C11—C12—C13—C8 0.69 (18)
C6—C7—C8—C9 −172.18 (12) C9—C8—C13—O5 −179.03 (10)
C14—O3—C9—C10 2.07 (17) C7—C8—C13—O5 −1.37 (17)
C14—O3—C9—C8 −178.87 (10) C9—C8—C13—C12 −0.82 (17)
C13—C8—C9—O3 −179.00 (10) C7—C8—C13—C12 176.84 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O2i 0.956 (15) 2.496 (15) 3.3512 (14) 148.9 (13)
C6—H6···O5 0.965 (15) 2.260 (14) 2.8197 (15) 116.0 (11)
C14—H14A···O4ii 0.975 (15) 2.589 (16) 3.4462 (14) 146.7 (11)
C15—H15A···O1iii 0.989 (16) 2.546 (16) 3.4293 (18) 148.6 (12)
C16—H16A···O1iii 0.982 (16) 2.575 (16) 3.4120 (16) 143.0 (12)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+2; (ii) −x, −y, −z+1; (iii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5630).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [DOI] [PMC free article] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). Opt. Laser Technol.40, 528–537.
  7. Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem 12, 483–499.
  8. Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron 27, 861–867.
  9. Ng, L.-T., Ko, H.-H. & Lu, T.-M. (2009). Bioorg. Med. Chem 17, 4360–4366. [DOI] [PubMed]
  10. Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Exp. Opin. Ther. Patents, 14, 1669–1691.
  11. Nowakowska, Z. (2007). Eur. J. Med. Chem 42, 125–137. [DOI] [PubMed]
  12. Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett.62, 451–453.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576. [DOI] [PMC free article] [PubMed]
  16. Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol 25, 503–508.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035762/hb5630sup1.cif

e-66-o2559-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035762/hb5630Isup2.hkl

e-66-o2559-Isup2.hkl (193.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES