Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2660. doi: 10.1107/S1600536810038249

[(3R,4S)-4-(4-Fluoro­phen­yl)-1-methyl­piperidin-3-yl]methyl 4-methyl­benzene­sulfonate

Jianfeng Qi a, Hanjing Chen a, Chen Zhang a,*
PMCID: PMC2983192  PMID: 21587631

Abstract

In the title compound, C20H24FNO3S, the piperidine ring adopts a chair conformation. The dihedral angle between the aromatic rings is 47.01 (17)°.

Related literature

For general background to the design and synthesis of vinyl sulfonate derivatives, see: Curzons (2003), Segura et al. (2003). For related structures, see: Wang & Kanagawa (1997).graphic file with name e-66-o2660-scheme1.jpg

Experimental

Crystal data

  • C20H24FNO3S

  • M r = 377.46

  • Monoclinic, Inline graphic

  • a = 9.1590 (4) Å

  • b = 10.0764 (5) Å

  • c = 10.7644 (6) Å

  • β = 95.718 (1)°

  • V = 988.50 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.931, T max = 0.963

  • 9742 measured reflections

  • 4457 independent reflections

  • 3114 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.084

  • S = 1.00

  • 4457 reflections

  • 238 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 2086 Friedel pairs

  • Flack parameter: 0.05 (6)

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038249/kj2148sup1.cif

e-66-o2660-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038249/kj2148Isup2.hkl

e-66-o2660-Isup2.hkl (213.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Mr Jian-ming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for his assistance with the crystal structure analysis.

supplementary crystallographic information

Comment

The title compound is a useful intermediate in preparing paroxetine [(3S,4R)-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl)- piperidine]. Paroxetine is a well-known selective serotonin reuptake inhibitor (SSRI) antidepressant, used world wide in therapeutics (Segura et al., 2003). In view of the above, ((3R,4S)-4-(4-fluorophenyl)-1-methylpiperidin-3-yl)methyl 4-methylbenzenesulfonate was synthesized and its crystal structure is reported here. A perspective view of the structure with the atomic numbering scheme is shown in Fig. 1. The dihedral angle between the two benzene rings is 47.01 (17)°. The piperidine ring adopts a chair conformation. The piperidine ring contains three planes (C2/C4/C5/C6, C3/C4/N1/C6, C2/C3/C5/N1), the first one of which is more planar than the other two.

Experimental

To a stirred solution of trans-(-)-paroxo (10 g) in dichloromethane (50 ml) triethylamine (7 ml) was added. The mixture was cooled to 268 K. Toluenesulfonyl chloride (12 g) was slowly added and stirred for l h at 268 K. Methanesulfonic acid (4 ml) was then added gradually and the mixture was concentrated at about 323 K at atmospheric pressure. The residue was taken up in toluene, water was added and this was stirred for 30 minutes. The top toluene layer was separated. The pH of the aqueous layer was then adjusted to 9.0 with a saturated NaHCO3 solution. The product was filtered, washed with water and dried to yield the title compound (13 g) as a white to off-white solid (m.p. 380-381 K).

Refinement

All H atoms were placed in calculated positions, with C—H distances in the range 0.93-0.98 and included in the final cycles of refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing atom labels and 40% probability displacement ellipsoids.

Crystal data

C20H24FNO3S F(000) = 400
Mr = 377.46 Dx = 1.268 Mg m3
Monoclinic, P21 Melting point: 380 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 9.1590 (4) Å Cell parameters from 7787 reflections
b = 10.0764 (5) Å θ = 3.0–27.4°
c = 10.7644 (6) Å µ = 0.19 mm1
β = 95.718 (1)° T = 296 K
V = 988.50 (9) Å3 Chunk, yellow
Z = 2 0.32 × 0.26 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4457 independent reflections
Radiation source: rolling anode 3114 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 10.00 pixels mm-1 θmax = 27.4°, θmin = 3.0°
ω scans h = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −13→13
Tmin = 0.931, Tmax = 0.963 l = −13→13
9742 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.063P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.17 e Å3
4457 reflections Δρmin = −0.14 e Å3
238 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0052 (13)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2086 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.05 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34071 (5) 0.65560 (6) 0.19254 (4) 0.05870 (14)
O1 0.37947 (12) 0.66249 (15) 0.33871 (9) 0.0550 (3)
C14 0.51158 (17) 0.6533 (2) 0.13267 (13) 0.0496 (4)
O2 0.2721 (2) 0.52973 (18) 0.17277 (14) 0.0832 (5)
C2 0.4586 (2) 0.77398 (17) 0.53214 (15) 0.0481 (4)
H2 0.4844 0.8619 0.5665 0.058*
O3 0.26443 (18) 0.77282 (18) 0.15090 (14) 0.0788 (5)
N1 0.3547 (2) 0.71908 (16) 0.72847 (16) 0.0659 (5)
C3 0.5921 (2) 0.68346 (16) 0.56744 (16) 0.0533 (5)
H3 0.5703 0.5965 0.5292 0.064*
C7 0.7277 (2) 0.73680 (18) 0.51511 (18) 0.0568 (5)
C4 0.6116 (2) 0.6639 (3) 0.70958 (16) 0.0684 (5)
H4A 0.6855 0.5963 0.7303 0.082*
H4B 0.6463 0.7460 0.7492 0.082*
C1 0.4245 (2) 0.79152 (17) 0.39340 (16) 0.0507 (4)
H1A 0.3462 0.8558 0.3764 0.061*
H1B 0.5105 0.8238 0.3571 0.061*
C15 0.5673 (2) 0.7700 (2) 0.08678 (18) 0.0595 (5)
H15 0.5152 0.8491 0.0888 0.071*
C6 0.3242 (2) 0.7278 (2) 0.59338 (18) 0.0615 (5)
H6A 0.2441 0.7895 0.5729 0.074*
H6B 0.2937 0.6414 0.5604 0.074*
C5 0.4712 (3) 0.62325 (19) 0.75996 (19) 0.0737 (7)
H5A 0.4409 0.5373 0.7260 0.088*
H5B 0.4878 0.6148 0.8500 0.088*
C8 0.7843 (2) 0.6761 (3) 0.41456 (18) 0.0696 (6)
H8 0.7424 0.5975 0.3828 0.083*
C19 0.5895 (3) 0.5365 (2) 0.12864 (18) 0.0630 (5)
H19 0.5529 0.4583 0.1595 0.076*
C9 0.9024 (3) 0.7304 (3) 0.3602 (2) 0.0862 (7)
H9 0.9399 0.6887 0.2931 0.103*
C17 0.7790 (2) 0.6507 (4) 0.03166 (18) 0.0795 (6)
C18 0.7223 (3) 0.5368 (3) 0.0783 (2) 0.0792 (7)
H18 0.7748 0.4580 0.0759 0.095*
C20 0.9241 (3) 0.6477 (6) −0.0255 (3) 0.1361 (12)
H20A 0.9107 0.6047 −0.1054 0.204*
H20B 0.9953 0.5998 0.0285 0.204*
H20C 0.9579 0.7369 −0.0357 0.204*
F1 1.07463 (15) 0.9031 (2) 0.35259 (18) 0.1293 (7)
C13 0.2204 (3) 0.6809 (4) 0.7843 (2) 0.1021 (10)
H13A 0.1910 0.5934 0.7567 0.153*
H13B 0.1435 0.7428 0.7590 0.153*
H13C 0.2392 0.6815 0.8737 0.153*
C12 0.7948 (2) 0.8534 (2) 0.5606 (2) 0.0732 (6)
H12 0.7603 0.8954 0.6288 0.088*
C10 0.9617 (2) 0.8460 (3) 0.4074 (3) 0.0858 (7)
C16 0.7006 (3) 0.7662 (3) 0.0384 (2) 0.0751 (7)
H16 0.7389 0.8444 0.0092 0.090*
C11 0.9115 (3) 0.9079 (3) 0.5067 (3) 0.0885 (7)
H11 0.9551 0.9859 0.5379 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0645 (3) 0.0783 (3) 0.0327 (2) −0.0102 (3) 0.00190 (16) 0.0008 (3)
O1 0.0736 (7) 0.0586 (6) 0.0328 (5) −0.0118 (8) 0.0056 (5) 0.0006 (7)
C14 0.0649 (9) 0.0540 (9) 0.0294 (7) −0.0033 (11) 0.0024 (6) 0.0024 (9)
O2 0.0960 (12) 0.1015 (12) 0.0521 (9) −0.0489 (10) 0.0078 (8) −0.0117 (8)
C2 0.0602 (10) 0.0463 (9) 0.0372 (9) −0.0004 (8) 0.0026 (7) −0.0028 (7)
O3 0.0729 (10) 0.1132 (13) 0.0492 (9) 0.0227 (9) 0.0005 (7) 0.0127 (9)
N1 0.0924 (13) 0.0687 (10) 0.0391 (9) −0.0094 (9) 0.0187 (8) −0.0068 (7)
C3 0.0747 (11) 0.0445 (11) 0.0392 (9) 0.0079 (9) −0.0017 (8) −0.0071 (7)
C7 0.0597 (11) 0.0611 (11) 0.0475 (11) 0.0165 (9) −0.0053 (9) −0.0066 (9)
C4 0.0977 (13) 0.0628 (10) 0.0419 (9) 0.0124 (14) −0.0073 (9) 0.0007 (11)
C1 0.0588 (10) 0.0501 (10) 0.0429 (10) −0.0019 (8) 0.0036 (8) 0.0031 (7)
C15 0.0787 (14) 0.0583 (11) 0.0409 (10) −0.0056 (10) 0.0027 (9) 0.0054 (9)
C6 0.0715 (13) 0.0689 (11) 0.0452 (11) −0.0076 (10) 0.0106 (9) −0.0042 (8)
C5 0.1250 (19) 0.0585 (15) 0.0376 (10) −0.0056 (12) 0.0081 (11) 0.0020 (8)
C8 0.0716 (12) 0.0842 (15) 0.0506 (11) 0.0210 (13) −0.0051 (9) −0.0139 (12)
C19 0.0824 (15) 0.0587 (12) 0.0467 (12) −0.0019 (11) 0.0004 (10) −0.0012 (9)
C9 0.0689 (14) 0.130 (2) 0.0600 (15) 0.0322 (14) 0.0061 (11) −0.0080 (13)
C17 0.0626 (11) 0.1280 (19) 0.0472 (11) −0.0052 (18) 0.0019 (8) −0.0036 (16)
C18 0.0810 (17) 0.0940 (17) 0.0603 (14) 0.0232 (14) −0.0049 (12) −0.0148 (13)
C20 0.0691 (14) 0.253 (4) 0.0883 (19) −0.003 (3) 0.0194 (13) −0.009 (3)
F1 0.0667 (8) 0.1822 (18) 0.1440 (16) 0.0034 (10) 0.0364 (9) 0.0170 (13)
C13 0.122 (2) 0.131 (3) 0.0591 (14) −0.040 (2) 0.0382 (13) −0.0086 (15)
C12 0.0656 (12) 0.0774 (14) 0.0771 (15) 0.0049 (11) 0.0098 (11) −0.0234 (11)
C10 0.0482 (12) 0.118 (2) 0.0909 (19) 0.0140 (13) 0.0073 (12) 0.0047 (16)
C16 0.0785 (16) 0.0988 (18) 0.0482 (13) −0.0271 (14) 0.0079 (11) 0.0101 (12)
C11 0.0601 (13) 0.0933 (17) 0.112 (2) −0.0020 (12) 0.0077 (13) −0.0169 (15)

Geometric parameters (Å, °)

S1—O3 1.4219 (18) C6—H6A 0.9700
S1—O2 1.4220 (17) C6—H6B 0.9700
S1—O1 1.5796 (10) C5—H5A 0.9700
S1—C14 1.7510 (16) C5—H5B 0.9700
O1—C1 1.469 (2) C8—C9 1.392 (3)
C14—C19 1.379 (3) C8—H8 0.9300
C14—C15 1.392 (3) C19—C18 1.380 (4)
C2—C1 1.505 (2) C19—H19 0.9300
C2—C6 1.527 (3) C9—C10 1.362 (4)
C2—C3 1.542 (2) C9—H9 0.9300
C2—H2 0.9800 C17—C16 1.374 (4)
N1—C5 1.454 (3) C17—C18 1.375 (4)
N1—C6 1.456 (2) C17—C20 1.519 (3)
N1—C13 1.474 (3) C18—H18 0.9300
C3—C7 1.513 (3) C20—H20A 0.9600
C3—C4 1.535 (2) C20—H20B 0.9600
C3—H3 0.9800 C20—H20C 0.9600
C7—C8 1.387 (3) F1—C10 1.368 (3)
C7—C12 1.392 (3) C13—H13A 0.9600
C4—C5 1.501 (3) C13—H13B 0.9600
C4—H4A 0.9700 C13—H13C 0.9600
C4—H4B 0.9700 C12—C11 1.380 (3)
C1—H1A 0.9700 C12—H12 0.9300
C1—H1B 0.9700 C10—C11 1.356 (4)
C15—C16 1.375 (3) C16—H16 0.9300
C15—H15 0.9300 C11—H11 0.9300
O3—S1—O2 119.85 (9) C2—C6—H6B 109.3
O3—S1—O1 109.40 (9) H6A—C6—H6B 108.0
O2—S1—O1 103.91 (9) N1—C5—C4 111.70 (17)
O3—S1—C14 108.92 (10) N1—C5—H5A 109.3
O2—S1—C14 109.32 (12) C4—C5—H5A 109.3
O1—S1—C14 104.29 (6) N1—C5—H5B 109.3
C1—O1—S1 117.67 (11) C4—C5—H5B 109.3
C19—C14—C15 120.08 (17) H5A—C5—H5B 107.9
C19—C14—S1 120.46 (16) C7—C8—C9 121.4 (2)
C15—C14—S1 119.45 (17) C7—C8—H8 119.3
C1—C2—C6 111.55 (15) C9—C8—H8 119.3
C1—C2—C3 113.27 (14) C14—C19—C18 119.3 (2)
C6—C2—C3 111.54 (15) C14—C19—H19 120.4
C1—C2—H2 106.7 C18—C19—H19 120.4
C6—C2—H2 106.7 C10—C9—C8 118.5 (2)
C3—C2—H2 106.7 C10—C9—H9 120.8
C5—N1—C6 109.66 (15) C8—C9—H9 120.8
C5—N1—C13 110.76 (19) C16—C17—C18 117.99 (19)
C6—N1—C13 109.76 (18) C16—C17—C20 121.4 (3)
C7—C3—C4 113.49 (15) C18—C17—C20 120.6 (4)
C7—C3—C2 110.99 (14) C17—C18—C19 121.7 (2)
C4—C3—C2 109.40 (15) C17—C18—H18 119.2
C7—C3—H3 107.6 C19—C18—H18 119.2
C4—C3—H3 107.6 C17—C20—H20A 109.5
C2—C3—H3 107.6 C17—C20—H20B 109.5
C8—C7—C12 117.4 (2) H20A—C20—H20B 109.5
C8—C7—C3 121.21 (18) C17—C20—H20C 109.5
C12—C7—C3 121.27 (18) H20A—C20—H20C 109.5
C5—C4—C3 112.10 (16) H20B—C20—H20C 109.5
C5—C4—H4A 109.2 N1—C13—H13A 109.5
C3—C4—H4A 109.2 N1—C13—H13B 109.5
C5—C4—H4B 109.2 H13A—C13—H13B 109.5
C3—C4—H4B 109.2 N1—C13—H13C 109.5
H4A—C4—H4B 107.9 H13A—C13—H13C 109.5
O1—C1—C2 108.42 (13) H13B—C13—H13C 109.5
O1—C1—H1A 110.0 C11—C12—C7 121.4 (2)
C2—C1—H1A 110.0 C11—C12—H12 119.3
O1—C1—H1B 110.0 C7—C12—H12 119.3
C2—C1—H1B 110.0 C11—C10—C9 122.2 (2)
H1A—C1—H1B 108.4 C11—C10—F1 118.5 (3)
C16—C15—C14 118.8 (2) C9—C10—F1 119.3 (3)
C16—C15—H15 120.6 C17—C16—C15 122.2 (2)
C14—C15—H15 120.6 C17—C16—H16 118.9
N1—C6—C2 111.50 (16) C15—C16—H16 118.9
N1—C6—H6A 109.3 C10—C11—C12 119.1 (2)
C2—C6—H6A 109.3 C10—C11—H11 120.4
N1—C6—H6B 109.3 C12—C11—H11 120.4
O3—S1—O1—C1 −38.54 (14) C13—N1—C6—C2 177.1 (2)
O2—S1—O1—C1 −167.66 (14) C1—C2—C6—N1 −176.31 (15)
C14—S1—O1—C1 77.84 (14) C3—C2—C6—N1 55.9 (2)
O3—S1—C14—C19 −161.67 (15) C6—N1—C5—C4 61.7 (2)
O2—S1—C14—C19 −29.00 (16) C13—N1—C5—C4 −177.04 (18)
O1—S1—C14—C19 81.61 (16) C3—C4—C5—N1 −57.2 (2)
O3—S1—C14—C15 17.09 (17) C12—C7—C8—C9 −0.8 (3)
O2—S1—C14—C15 149.76 (15) C3—C7—C8—C9 175.15 (18)
O1—S1—C14—C15 −99.62 (15) C15—C14—C19—C18 −0.3 (3)
C1—C2—C3—C7 57.92 (18) S1—C14—C19—C18 178.51 (16)
C6—C2—C3—C7 −175.24 (14) C7—C8—C9—C10 −0.4 (3)
C1—C2—C3—C4 −176.09 (16) C16—C17—C18—C19 1.1 (3)
C6—C2—C3—C4 −49.2 (2) C20—C17—C18—C19 −178.8 (2)
C4—C3—C7—C8 129.5 (2) C14—C19—C18—C17 −0.2 (3)
C2—C3—C7—C8 −106.83 (19) C8—C7—C12—C11 1.1 (3)
C4—C3—C7—C12 −54.7 (2) C3—C7—C12—C11 −174.8 (2)
C2—C3—C7—C12 68.9 (2) C8—C9—C10—C11 1.3 (4)
C7—C3—C4—C5 174.59 (17) C8—C9—C10—F1 −177.8 (2)
C2—C3—C4—C5 50.0 (2) C18—C17—C16—C15 −1.7 (3)
S1—O1—C1—C2 −178.87 (11) C20—C17—C16—C15 178.3 (2)
C6—C2—C1—O1 −61.63 (18) C14—C15—C16—C17 1.3 (3)
C3—C2—C1—O1 65.21 (18) C9—C10—C11—C12 −1.1 (4)
C19—C14—C15—C16 −0.3 (3) F1—C10—C11—C12 178.1 (2)
S1—C14—C15—C16 −179.04 (15) C7—C12—C11—C10 −0.2 (4)
C5—N1—C6—C2 −61.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2148).

References

  1. Curzons, A. D. (2003). US Patent No. 20030187269
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Segura, M., Roura, L., De La Torre, R. & Joglar, J. (2003). Bioorg. Chem.31, 248–258. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, S. & Kanagawa, Y. (1997). Eur. Patent No. 0810225

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038249/kj2148sup1.cif

e-66-o2660-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038249/kj2148Isup2.hkl

e-66-o2660-Isup2.hkl (213.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES